Skip to main content

Clinical Implications of Monitoring Tissue Perfusion in Cardiogenic Shock

  • Chapter
  • First Online:
Monitoring Tissue Perfusion in Shock

Abstract

Cardiogenic shock is a clinical state of acute circulatory failure secondary to a reduction in cardiac output to a level that is inadequate to supply tissues with sufficient oxygen for cellular metabolism. The vast majority of cases of cardiogenic shock are due to acute myocardial infarction (AMI) and subsequent LV dysfunction. Cardiogenic shock can also be caused by ventricular wall rupture, acute mitral valve regurgitation, valvular heart diseases, dysrhythmias or cardiomyopathy.

The critical care management of cardiogenic shock remains challenging, as reflected in the mortality rates of up to 50% of patients with AMI (Theile et al., N Engl J Med 367:1287–1296, 2012). Common pharmacological agents used to improve cardiac output and reverse tissue malperfusion, by definition, increase the myocardial oxygen demand with potentially deleterious consequences (Samuels et al., J Card Surg 14:288–293, 1999). For this reason it is critical to employ a strategy of augmenting cardiac output just enough to realise adequate organ perfusion without further exacerbating the supply/demand mismatch that the failing heart represents. The attainment of this balance point remains extremely difficult, exacerbated by the inherent inadequacies of our current technologies and biological markers that poorly, if at all, determine this endpoint. Consequently there is a fundamental requirement to develop technologies and treatment strategies with tissue perfusion at their core.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thiele H, Ohman EM, Desch S, Eitel I, de Waha S. Management of cardiogenic shock. Eur Heart J. 2015;36(20):1223–30.

    Article  PubMed  Google Scholar 

  2. Samuels LE, Kaufman MS, Thomas MP, Holmes EC, Brockman SK, Wechsler AS. Pharmacological criteria for ventricular assist device insertion following postcardiotomy shock: experience with the Abiomed BVS system. J Card Surg. 1999;14(4):288–93.

    Article  CAS  PubMed  Google Scholar 

  3. Moore JP, Dyson A, Singer M, Fraser J. Microcirculatory dysfunction and resuscitation: the why, when and how. Br J Anaesth. 2014;11(3):366–75.

    Article  Google Scholar 

  4. Vincent JL, Rhodes A, Perel A, Martin GS, Della Rocca G, Vallet B, Pinsky MR, Hofer CK, Teboul JL, de Boode WP, Scolletta S, Vieillard-Baron A, De Backer D, Walley KR, Maggiorini M, Singer M. Clinical review: update on hemodynamic monitoring—a consensus of 16. Crit Care. 2011;15(4):229. https://doi.org/10.1186/cc10291.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Connors AF Jr, Speroff T, Dawson NV, Thomas C, Harrell FE Jr, Wagner D, Desbiens N, Goldman L, Wu AW, Califf RM, Fulkerson WJ Jr, Vidaillet H, Broste S, Bellamy P, Lynn J, Knaus WA. The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA. 1996;276(11):889–97.

    Article  PubMed  Google Scholar 

  6. Vincent JL, Pinsky MR, Sprung CL, Levy M, Marini JJ, Payen D, Rhodes A, Takala J. The pulmonary artery catheter: in medio virtus. Crit Care Med. 2008;36(11):3093–6. https://doi.org/10.1097/CCM.0b013e31818c10c7.

    Article  PubMed  Google Scholar 

  7. Freedlander SO, Lenhart CH. Clinical observations on the capillary circulation. Arch Intern Med. 1922;29:12–32. https://doi.org/10.1001/archinte.1922.00110010017002.

    Article  Google Scholar 

  8. De Backer D, Creteur J, Dubois MJ, Sakr Y, Vincent JL. Microvascular alterations in patients with acute severe heart failure and cardiogenic shock. Am Heart J. 2004;147(1):91–9.

    Article  PubMed  Google Scholar 

  9. den Uil CA, Lagrand WK, van der Ent M, Jewbali LS, Cheng JM, Spronk PE, Simoons ML. Impaired microcirculation predicts poor outcome of patients with acute myocardial infarction complicated by cardiogenic shock. Eur Heart J. 2010;31(24):3032–9. https://doi.org/10.1093/eurheartj/ehq324.

    Article  Google Scholar 

  10. Jung C, Ferrari M, Rodiger C, Fritzenwanger M, Goebel B, Lauten A, Pfeifer R, Figulla HR. Evaluation of the sublingual microcirculation in cardiogenic shock. Clin Hemorheol Microcirc. 2009;42:141–8.

    PubMed  Google Scholar 

  11. Lauten A, Ferrari M, Goebel B, Rademacher W, Schumm J, Uth O, Kiehntopf M, Figulla HR, Jung C. Microvascular tissue perfusion is impaired in acutely decompensated heart failure and improves following standard treatment. Eur J Heart Fail. 2011;13(7):711–7. https://doi.org/10.1093/eurjhf/hfr043.

    Article  PubMed  CAS  Google Scholar 

  12. Wroblewski H, Kastrup J, Norgaard T, Mortensen SA, Haunso S. Evidence of increased microvascular resistance and arteriolar hyalinosis in skin in congestive heart failure secondary to idiopathic dilated cardiomyopathy. Am J Cardiol. 1992;69:769–74.

    Article  CAS  PubMed  Google Scholar 

  13. Elbers PW, Prins WB, Plokker HW, van Dongen EP, van Iterson M, Ince C. Electrical cardioversion for atrial fibrillation improves microvascular flow independent of blood pressure changes. J Cardiothorac Vasc Anesth. 2012;26(5):799–803. https://doi.org/10.1053/j.jvca.2012.04.016.

    Article  PubMed  Google Scholar 

  14. Hasdai D, Holmes DR Jr, Califf RM, Thompson TD, Hochman JS, Pfisterer M, Topol EJ. Cardiogenic shock complicating acute myocardial infarction: predictors of death. GUSTO Investigators. Global utilization of streptokinase and tissue-plasminogen activator for occluded coronary arteries. Am Heart J. 1999;138(1 Pt 1):21–31.

    Article  CAS  PubMed  Google Scholar 

  15. Kara A, Akin S, dos Reis Miranda D, Struijs A, Caliskan K, van Thiel RJ, Dubois EA, de Wilde W, Zijlstra F, Gommers D, Ince C. Microcirculatory assessment of patients under VA-ECMO. Crit Care. 2016;20:344.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Leimbach WN Jr, Wallin BG, Victor RG, Aylward PE, Sundlof G, Mark AL. Direct evidence from intraneural recordings for increased central sympathetic outflow in patients with heart failure. Circulation. 1986;73:913–9.

    Article  PubMed  Google Scholar 

  17. Reilly PM, Wilkins KB, Fuh KC, Haglund U, Bulkley GB. The mesenteric hemodynamic response to circulatory shock: an overview. Shock. 2001;15(5):329–43.

    Article  CAS  PubMed  Google Scholar 

  18. Schrier RW, Abraham WT. Hormones and hemodynamics in heart failure. N Engl J Med. 1999;341(8):577–85. https://doi.org/10.1056/NEJM199908193410806.

    Article  PubMed  CAS  Google Scholar 

  19. Toner A, Whittle J, Ackland GL. Autonomic dysfunction is the motor of chronic critical illness. In: Vincent J-L, editor. Annual update in intensive care and emergency medicine 2013. Berlin: Springer; 2013. p. 199–209. https://doi.org/10.1007/978-3-642-35109-9_16.

    Chapter  Google Scholar 

  20. Kirschenbaum LA, Astiz ME, Rackow EC, Saha DC, Lin R. Microvascular response in patients with cardiogenic shock. Crit Care Med. 2000;28(5):1290–4.

    Article  CAS  PubMed  Google Scholar 

  21. Katz SD, Khan T, Zeballos GA, Mathew L, Potharlanka P, Knecht M, Whelan J. Decreased activity of the L-arginine-nitric oxide metabolic pathway in patients with congestive heart failure. Circulation. 1999;99(16):2113–7.

    Article  CAS  PubMed  Google Scholar 

  22. Smith CJ, Sun D, Hoegler C, Roth BS, Zhang X, Zhao G, Xu XB, Kobari Y, Pritchard K Jr, Sessa WC, Hintze TH. Reduced gene expression of vascular endothelial NO synthase and cyclooxygenase-1 in heart failure. Circ Res. 1996;78(1):58–64.

    Article  CAS  PubMed  Google Scholar 

  23. Wang J, Seyedi N, Xu XB, Wolin MS, Hintze TH. Defective endothelium-mediated control of coronary circulation in conscious dogs after heart failure. Am J Physiol. 1994;266:H670–80.

    Article  CAS  PubMed  Google Scholar 

  24. den Uil CA, Caliskan K, Lagrand WK, van der Ent M, Jewbali LS, van Kuijk JP, Spronk PE, Simoons ML. Dose-dependent benefit of nitroglycerin on microcirculation of patients with severe heart failure. Intensive Care Med. 2009;35(11):1893–9. https://doi.org/10.1007/s00134-009-1591-4.

    Article  CAS  Google Scholar 

  25. den Uil CA, Lagrand WK, Spronk PE, van der Ent M, Jewbali LS, Brugts JJ, Ince C, Simoons ML. Low-dose nitroglycerin improves microcirculation in hospitalized patients with acute heart failure. Eur J Heart Fail. 2009;11:386–90. https://doi.org/10.1093/eurjhf/hfp021.

    Article  CAS  Google Scholar 

  26. Hochman JS, Sleeper LA, Godfrey E, McKinlay SM, Sanborn T, Col J, LeJemtel T. SHould we emergently revascularize occluded coronaries for cardiogenic shocK: an international randomized trial of emergency PTCA/CABG-trial design. The SHOCK Trial Study Group. Am Heart J. 1999;137(2):313–21.

    Article  CAS  PubMed  Google Scholar 

  27. Menon V, Slater JN, White HD, Sleeper LA, Cocke T, Hochman JS. Acute myocardial infarction complicated by systemic hypoperfusion without hypotension: report of the SHOCK trial registry. Am J Med. 2000;108(5):374–80.

    Article  CAS  PubMed  Google Scholar 

  28. Feng Q, Lu X, Jones DL, Shen J, Arnold JMO. Increased inducible nitric oxide synthase expression contributes to myocardial dysfunction and higher mortality after myocardial infarction in mice. Circulation. 2001;104:700–4. https://doi.org/10.1161/hc3201.092284.

    Article  PubMed  CAS  Google Scholar 

  29. Hare JM, Keaney JF Jr, Balligand JL, Loscalzo J, Smith TW, Colucci WS. Role of nitric oxide in parasympathetic modulation of beta-adrenergic myocardial contractility in normal dogs. J Clin Invest. 1995;95:360–6. https://doi.org/10.1172/JCI117664.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Keaney JF Jr, Hare JM, Balligand JL, Loscalzo J, Smith TW, Colucci WS. Inhibition of nitric oxide synthase augments myocardial contractile responses to beta-adrenergic stimulation. Am J Phys. 1996;271:H2646–52.

    CAS  Google Scholar 

  31. Cotter G, Kaluski E, Blatt A, Milovanov O, Moshkovitz Y, Zaidenstein R, Salah A, Alon D, Michovitz Y, Metzger M, Vered Z, Golik A. L-NMMA (a nitric oxide synthase inhibitor) is effective in the treatment of cardiogenic shock. Circulation. 2000;101:1358–61.

    Article  CAS  PubMed  Google Scholar 

  32. Cotter G, Kaluski E, Milo O, Blatt A, Salah A, Hendler A, Krakover R, Golick A, Vered Z. LINCS: L-NAME (a NO synthase inhibitor) in the treatment of refractory cardiogenic shock: a prospective randomized study. Eur Heart J. 2003;24:1287–95.

    Article  CAS  PubMed  Google Scholar 

  33. Dzavik V, Cotter G, Reynolds HR, Alexander JH, Ramanathan K, Stebbins AL, Hathaway D, Farkouh ME, Ohman EM, Baran DA, Prondzinsky R, Panza JA, Cantor WJ, Vered Z, Buller CE, Kleiman NS, Webb JG, Holmes DR, Parrillo JE, Hazen SL, Gross SS, Harrington RA, Hochman JS, SHould We Inhibit Nitric Oxide Synthase in Cardiogenic shocK 2 (SHOCK-2) Investigators. Effect of nitric oxide synthase inhibition on haemodynamics and outcome of patients with persistent cardiogenic shock complicating acute myocardial infarction: a phase II dose-ranging study. Eur Heart J. 2007;28(9):1109–16. https://doi.org/10.1093/eurheartj/ehm075.

    Article  PubMed  CAS  Google Scholar 

  34. Sánchez de Miguel L, Arriero MM, Montón M, López-Farré A, Farré J, Cabestrero F, Martín E, Romero J, Jiménez P, García-Méndez A, de Frutos T, Jiménez A, García R, Gómez J, de Andrés R, De la Calle-Lombana LM, Rico L. Nitric oxide production by neutrophils obtained from patients during acute coronary syndromes: expression of the nitric oxide synthase isoforms. J Am Coll Cardiol. 2002;39:818–25. https://doi.org/10.1016/s0735-1097(01)01828-9.

    Article  PubMed  Google Scholar 

  35. TRIUMPH Investigators, Alexander JH, Reynolds HR, Stebbins AL, Dzavik V, Harrington RA, Van de Werf F, Hochman JS. Effect of tilarginine acetate in patients with acute myocardial infarction and cardiogenic shock: the TRIUMPH randomized controlled trial. JAMA. 2007;297(15):1657–66. https://doi.org/10.1001/jama.297.15.joc70035.

    Article  Google Scholar 

  36. Dormandy J, Ernst E, Matrai A, Flute PT. Hemorrheologic changes following acute myocardial infarction. Am Heart J. 1982;104(6):1364–7.

    Article  CAS  PubMed  Google Scholar 

  37. Geppert A, Steiner A, Zorn G, Delle-Karth G, Koreny M, Haumer M, Siostrzonek P, Huber K, Heinz G. Multiple organ failure in patients with cardiogenic shock is associated with high plasma levels of interleukin-6. Crit Care Med. 2002;30:1987–94. https://doi.org/10.1097/01.CCM.0000026730.19872.33.

    Article  PubMed  CAS  Google Scholar 

  38. Kohsaka S, Menon V, Lowe AM, Lange M, Dzavik V, Sleeper LA, Hochman JS, SHOCK Investigators. Systemic inflammatory response syndrome after acute myocardial infarction complicated by cardiogenic shock. Arch Intern Med. 2005;165(14):1643–50. https://doi.org/10.1001/archinte.165.14.1643.

    Article  PubMed  Google Scholar 

  39. Neumann FJ, Ott I, Gawaz M, Richardt G, Holzapfel H, Jochum M, Schomig A. Cardiac release of cytokines and inflammatory responses in acute myocardial infarction. Circulation. 1995;92:748–55.

    Article  CAS  PubMed  Google Scholar 

  40. Ott I, Neumann FJ, Kenngott S, Gawaz M, Schomig A. Procoagulant inflammatory responses of monocytes after direct balloon angioplasty in acute myocardial infarction. Am J Cardiol. 1998;82:938–42.

    Article  CAS  PubMed  Google Scholar 

  41. Hayes MA, Timmins AC, Yau EH, Palazzo M, Hinds CJ, Watson D. Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med. 1994;330:1717–22. https://doi.org/10.1056/NEJM199406163302404.

    Article  PubMed  CAS  Google Scholar 

  42. Hogan CJ, Ward KR, Franzen DS, Rajendran B, Thacker LR. Sublingual tissue perfusion improves during emergency treatment of acute decompensated heart failure. Am J Emerg Med. 2012;30(6):872–80. https://doi.org/10.1016/j.ajem.2011.06.005.

    Article  PubMed  Google Scholar 

  43. Harrois A, Dupic L, Duranteau J. Targeting the microcirculation in resuscitation of acutely unwell patients. Curr Opin Crit Care. 2011;17:303–7. https://doi.org/10.1097/MCC.0b013e3283466ba0.

    Article  PubMed  Google Scholar 

  44. Vincent JL, De Backer D. ICU nephrology: the implications of cardiovascular alterations in the acutely ill. Kidney Int. 2012;81(11):1060–6. https://doi.org/10.1038/ki.2011.389.

    Article  PubMed  Google Scholar 

  45. Rao SV, Jollis JG, Harrington RA, Granger CB, Newby LK, Armstrong PW, Moliterno DJ, Lindblad L, Pieper K, Topol EJ, Stamler JS, Califf RM. Relationship of blood transfusion and clinical outcomes in patients with acute coronary syndromes. JAMA. 2004;292(13):1555–62. https://doi.org/10.1001/jama.292.13.1555.

    Article  PubMed  CAS  Google Scholar 

  46. Task Force on the Management of ST-segment Elevation Acute Myocardial Infarction of the European Society of Cardiology (ESC), Steg PG, James SK, Atar D, Badano LP, Blömstrom-Lundqvist C, Borger MA, Di Mario C, Dickstein K, Ducrocq G, Fernandez-Aviles F, Gershlick AH, Giannuzzi P, Halvorsen S, Huber K, Juni P, Kastrati A, Knuuti J, Lenzen MJ, Mahaffey KW, Valgimigli M, van’t Hof A, Widimsky P, Zahger D. ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2012;33(20):2569–619. https://doi.org/10.1093/eurheartj/ehs215.

    Article  CAS  Google Scholar 

  47. Unverzagt S, Wachsmuth L, Hirsch K, Thiele H, Buerke M, Haerting J, Werdan K, Prondzinsky R. Inotropic agents and vasodilator strategies for acute myocardial infarction complicated by cardiogenic shock or low cardiac output syndrome. Cochrane Database Syst Rev. 2014;1:CD009669. https://doi.org/10.1002/14651858.CD009669.pub2.

    Article  Google Scholar 

  48. Thackray S, Easthaugh J, Freemantle N, Cleland JG. The effectiveness and relative effectiveness of intravenous inotropic drugs acting through the adrenergic pathway in patients with heart failure-a meta-regression analysis. Eur J Heart Fail. 2002;4(4):515–29.

    Article  CAS  PubMed  Google Scholar 

  49. De Backer D, Biston P, Devriendt J, Madl C, Chochrad D, Aldecoa C, Brasseur A, Defrance P, Gottignies P, Vincent JL. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362:779–89. https://doi.org/10.1056/NEJMoa0907118.

    Article  PubMed  Google Scholar 

  50. Fries M, Weil MH, Chang YT, Castillo C, Tang W. Microcirculation during cardiac arrest and resuscitation. Crit Care Med. 2006;34:S454–7. https://doi.org/10.1097/01.CCM.0000247717.81480.B2.

    Article  PubMed  Google Scholar 

  51. Jung C, Rodiger C, Fritzenwanger M, Schumm J, Lauten A, Figulla HR, Ferrari M. Acute microflow changes after stop and restart of intra-aortic balloon pump in cardiogenic shock. Clin Res Cardiol. 2009;98(8):469–75. https://doi.org/10.1007/s00392-009-0018-0.

    Article  PubMed  CAS  Google Scholar 

  52. Garcia-Gonzalez MJ, Dominguez-Rodriguez A, Ferrer-Hita JJ, Abreu-Gonzalez P, Munoz MB. Cardiogenic shock after primary percutaneous coronary intervention: effects of levosimendan compared with dobutamine on haemodynamics. Eur J Heart Fail. 2006;8(7):723–8. https://doi.org/10.1016/j.ejheart.2006.01.007.

    Article  PubMed  CAS  Google Scholar 

  53. Wimmer R. Effects of levosimendan on microcirculation in patients with cardiogenic shock. Circulation. 2008;118:s664–5.

    Google Scholar 

  54. Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, Long JW, Ascheim DD, Tierney AR, Levitan RG, Watson JT, Meier P, Ronan NS, Shapiro PA, Lazar RM, Miller LW, Gupta L, Frazier OH, Desvigne-Nickens P, Oz MC, Poirier VL, Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure Study Group. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345(20):1435–43. https://doi.org/10.1056/NEJMoa012175.

    Article  PubMed  CAS  Google Scholar 

  55. Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, Sun B, Tatooles AJ, Delgado RM 3rd, Long JW, Wozniak TC, Ghumman W, Farrar DJ, Frazier OH, HeartMate II Investigators. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361(23):2241–51. https://doi.org/10.1056/NEJMoa0909938.

    Article  PubMed  CAS  Google Scholar 

  56. Holman WL, Kormos RL, Naftel DC, Miller MA, Pagani FD, Blume E, Cleeton T, Koenig SC, Edwards L, Kirklin JK. Predictors of death and transplant in patients with a mechanical circulatory support device: a multi-institutional study. J Heart Lung Transplant. 2009;28(1):44–50. https://doi.org/10.1016/j.healun.2008.10.011.

    Article  PubMed  Google Scholar 

  57. Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson LW, Blume ED, Myers SL, Miller MA, Baldwin JT, Young JB. Seventh INTERMACS annual report: 15,000 patients and counting. J Heart Lung Transplant. 2015;34(12):1495–504. https://doi.org/10.1016/j.healun.2015.10.003.

    Article  PubMed  Google Scholar 

  58. Feldman D, Pamboukian SV, Teuteberg JJ, Birks E, Lietz K, Moore SA, Morgan JA, Arabia F, Bauman ME, Buchholz HW, Deng M, Dickstein ML, El-Banayosy A, Elliot T, Goldstein DJ, Grady KL, Jones K, Hryniewicz K, John R, Kaan A, Kusne S, Loebe M, Massicotte MP, Moazami N, Mohacsi P, Mooney M, Nelson T, Pagani F, Perry W, Potapov EV, Eduardo Rame J, Russell SD, Sorensen EN, Sun B, Strueber M, Mangi AA, Petty MG, Rogers J, International Society for Heart and Lung Transplantation. The 2013 International Society for Heart and Lung Transplantation guidelines for mechanical circulatory support: executive summary. J Heart Lung Transpl. 2013;32(2):157–87. https://doi.org/10.1016/j.healun.2012.09.013.

    Article  Google Scholar 

  59. Jung C, Lauten A, Rodiger C, Krizanic F, Figulla HR, Ferrari M. Effect of intra-aortic balloon pump support on microcirculation during high-risk percutaneous intervention. Perfusion. 2009;24(6):417–21. https://doi.org/10.1177/0267659109358208.

    Article  PubMed  Google Scholar 

  60. Munsterman LD, Elbers PW, Ozdemir A, van Dongen EP, van Iterson M, Ince C. Withdrawing intra-aortic balloon pump support paradoxically improves microvascular flow. Crit Care. 2010;14(4):R161. https://doi.org/10.1186/cc9242.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Thiele H, Zeymer U, Neumann FJ, Ferenc M, Olbrich HG, Hausleiter J, Richardt G, Hennersdorf M, Empen K, Fuernau G, Desch S, Eitel I, Hambrecht R, Fuhrmann J, Bohm M, Ebelt H, Schneider S, Schuler G, Werdan K, IABP-SHOCK II Trial Investigators. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med. 2012;367(14):1287–96. https://doi.org/10.1056/NEJMoa1208410.

    Article  PubMed  CAS  Google Scholar 

  62. Engstrom AE, Cocchieri R, Driessen AH, Sjauw KD, Vis MM, Baan J, de Jong M, Lagrand WK, van der Sloot JA, Tijssen JG, de Winter RJ, de Mol BA, Piek JJ, Henriques JP. The Impella 2.5 and 5.0 devices for ST-elevation myocardial infarction patients presenting with severe and profound cardiogenic shock: the Academic Medical Center intensive care unit experience. Crit Care Med. 2011;39(9):2072–9. https://doi.org/10.1097/CCM.0b013e31821e89b5.

    Article  PubMed  Google Scholar 

  63. Engstrom AE, Granfeldt H, Seybold-Epting W, Dahm M, Cocchieri R, Driessen AH, Sjauw KD, Vis MM, Baan J, Koch KT, De Jong M, Lagrand WK, Van Der Sloot JA, Tijssen JG, De Winter RJ, De Mol BA, Piek JJ, Henriques JP. Mechanical circulatory support with the Impella 5.0 device for postcardiotomy cardiogenic shock: a three-center experience. Minerva Cardioangiol. 2013;61(5):539–46.

    PubMed  CAS  Google Scholar 

  64. Jung C, Ferrari M, Rodiger C, Fritzenwanger M, Figulla H-R. Combined Impella and intra-aortic balloon pump support to improve macro- and microcirculation: a clinical case. Clin Res Cardiol. 2008;97:849–50.

    Article  PubMed  Google Scholar 

  65. Lam K, Sjauw KD, Henriques JP, Ince C, de Mol BA. Improved microcirculation in patients with an acute ST-elevation myocardial infarction treated with the Impella LP2.5 percutaneous left ventricular assist device. Clin Res Cardiol. 2009;98(5):311–8. https://doi.org/10.1007/s00392-009-0006-4.

    Article  PubMed  Google Scholar 

  66. Mullany D, Shekar K, Platts D, Fraser J. The rapidly evolving use of extracorporeal life support (ECLS) in adults. Heart Lung Circ. 2014;23(11):1091–2. https://doi.org/10.1016/j.hlc.2014.04.009.

    Article  PubMed  Google Scholar 

  67. Sheu JJ, Tsai TH, Lee FY, Fang HY, Sun CK, Leu S, Yang CH, Chen SM, Hang CL, Hsieh YK, Chen CJ, Wu CJ, Yip HK. Early extracorporeal membrane oxygenator-assisted primary percutaneous coronary intervention improved 30-day clinical outcomes in patients with ST-segment elevation myocardial infarction complicated with profound cardiogenic shock. Crit Care Med. 2010;38(9):1810–7. https://doi.org/10.1097/CCM.0b013e3181e8acf7.

    Article  PubMed  CAS  Google Scholar 

  68. Shekar K, Mullany DV, Thomson B, Ziegenfuss M, Platts DG, Fraser JF. Extracorporeal life support devices and strategies for management of acute cardiorespiratory failure in adult patients: a comprehensive review. Crit Care. 2014;18(3):219. https://doi.org/10.1186/cc13865.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Jung C, Ferrari M, Gradinger R, Fritzenwanger M, Pfeifer R, Schlosser M, Poerner TC, Brehm BR, Figulla HR. Evaluation of the microcirculation during extracorporeal membrane-oxygenation. Clin Hemorheol Microcirc. 2008;40(4):311–4.

    PubMed  Google Scholar 

  70. Jung C, Lauten A, Roediger C, Fritzenwanger M, Schumm J, Figulla HR, Ferrari M. In vivo evaluation of tissue microflow under combined therapy with extracorporeal life support and intra-aortic balloon counterpulsation. Anaesth Intensive Care. 2009;37(5):833–5.

    PubMed  CAS  Google Scholar 

  71. Kilburn DJ, Shekar K, Fraser JF. The complex relationship of extracorporeal membrane oxygenation and acute kidney injury: causation or association? Biomed Res Int. 2016;2016:1–14. https://doi.org/10.1155/2016/1094296.

    Article  CAS  Google Scholar 

  72. Cheng R, Hachamovitch R, Kittleson M, Patel J, Arabia F, Moriguchi J, Esmailian F, Azarbal B. Complications of extracorporeal membrane oxygenation for treatment of cardiogenic shock and cardiac arrest: a meta-analysis of 1,866 adult patients. Ann Thorac Surg. 2014;97(2):610–6. https://doi.org/10.1016/j.athoracsur.2013.09.008.

    Article  PubMed  Google Scholar 

  73. Akin S, dos Reis Miranda D, Caliskan K, Soliman OI, Guven G, Struijs A, van Thiel RJ, Jewbali LS, Lima A, Gommers D, Zijlstra F, Ince C. Functional evaluation of sublingual microcirculation indicates successful weaning from VA-ECMO in cardiogenic shock. Crit Care. 2017;21(1):265.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Tanaka S, Harrois A, Nicolai C, Flores M, Hamada S, Vicaut E, Duranteau J. Qualitative real-time analysis by nurses of sublingual microcirculation in intensive care unit: the MICRONURSE study. Crit Care. 2015;19:388. https://doi.org/10.1186/s13054-015-1106-3.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Werdan K, Gielen S, Ebelt H, Hochman JS. Mechanical circulatory support in cardiogenic shock. Eur Heart J. 2014;35(3):156–67.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Moore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moore, J., Fraser, J.F. (2018). Clinical Implications of Monitoring Tissue Perfusion in Cardiogenic Shock. In: Pinto Lima, A., Silva, E. (eds) Monitoring Tissue Perfusion in Shock. Springer, Cham. https://doi.org/10.1007/978-3-319-43130-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43130-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43128-4

  • Online ISBN: 978-3-319-43130-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics