Skip to main content

Nanoprecipitation Process: From Particle Preparation to In Vivo Applications

  • Chapter
  • First Online:
Polymer Nanoparticles for Nanomedicines

Abstract

Nanoparticles have been widely prepared during the past decades. In fact, encapsulation could provide several advantages over conventional pharmaceutical forms (Miladi et al. in Int J Pharm 445(1–2):181–195, 2013; Campos et al. in J Colloid Sci Biotechnol 2(2):106–111, 2013; Grando et al. in J Colloid Sci Biotechnol 2(2):140–145, 2013; De Melo et al. in J Colloid Sci Biotechnol 2(2):146–152, 2013; Mazzaferro et al. in J Colloid Sci Biotechnol 1(2):210–217, 2012; Lira et al. in J Colloid Sci Biotechnol 2(2):123–129, 2013; Wang et al. in J Colloid Sci Biotechnol 1(2):192–200, 2012). Although, several techniques have been used for the preparation of submicron particles from preformed polymers, nanoprecipitation is regarded as a quite simple and reproducible technique that allows the obtaining of submicron-sized polymer particles. Additionally, many research works have focused on the enhancement of the reproducibility of the technique in order to render it more suitable for industrial applications. Nanoprecipitation is still widely used to prepare particulate carriers which are based on various polymers. Biomedical applications of such drug delivery systems are multiple (Rosset et al. in J Colloid Sci Biotechnol 1(2):218–224, 2012; Khan et al. in J Colloid Sci Biotechnol 1(1):122–128, 2012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali H, Kalashnikova I, White MA, Sherman M, Rytting E (2013) Preparation, characterization, and transport of dexamethasone-loaded polymeric nanoparticles across a human placental in vitro model. Int J Pharm 454(1):149–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali ME, Lamprecht A (2013) Polyethylene glycol as an alternative polymer solvent for nanoparticle preparation. Int J Pharm 456(1):135–142

    Article  CAS  PubMed  Google Scholar 

  • Allémann E, Gurny R, Doelker E (1992) Preparation of aqueous polymeric nanodispersions by a reversible salting-out process: influence of process parameters on particle size. Int J Pharm 87(1–3):247–253

    Article  Google Scholar 

  • Almouazen E, Bourgeois S, Boussaïd A, Valot P, Malleval C, Fessi H et al (2012) Development of a nanoparticle-based system for the delivery of retinoic acid into macrophages. Int J Pharm 430(1–2):207–215

    Article  CAS  PubMed  Google Scholar 

  • Anand P, Nair HB, Sung B, Kunnumakkara AB, Yadav VR, Tekmal RR et al (2010) Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem Pharmacol 79(3):330–338

    Article  CAS  PubMed  Google Scholar 

  • Arica B, Lamprecht A (2005) In vitro evaluation of betamethasone-loaded nanoparticles. Drug Dev Ind Pharm 31(1):19–24

    Article  CAS  PubMed  Google Scholar 

  • Asadi H, Rostamizadeh K, Salari D, Hamidi M (2011) Preparation of biodegradable nanoparticles of tri-block PLA–PEG–PLA copolymer and determination of factors controlling the particle size using artificial neural network. J Microencapsul 28(5):406–416

    Article  CAS  PubMed  Google Scholar 

  • Bally F, Garg DK, Serra CA, Hoarau Y, Anton N, Brochon C et al (2012) Improved size-tunable preparation of polymeric nanoparticles by microfluidic nanoprecipitation. Polymer 53(22):5045–5051

    Article  CAS  Google Scholar 

  • Barwal I, Sood A, Sharma M, Singh B, Yadav SC (2013) Development of stevioside Pluronic-F-68 copolymer based PLA-nanoparticles as an antidiabetic nanomedicine. Colloids Surf B Biointerfaces 101:510–516

    Article  CAS  PubMed  Google Scholar 

  • Bazylińska U, Lewińska A, Lamch Ł, Wilk KA (2013) Polymeric nanocapsules and nanospheres for encapsulation and long sustained release of hydrophobic cyanine-type photosensitizer. Colloids Surf Physicochem Eng Asp [Internet]. mars 2013 [cité 1 mai 2013]; Disponible sur: https://www-sciencedirect-com.frodon.univ-paris5.fr/science/article/pii/S092777571300126X

  • Bernabeu E, Helguera G, Legaspi MJ, Gonzalez L, Hocht C, Taira C et al (2013) Paclitaxel-loaded PCL-TPGS nanoparticles: In vitro and in vivo performance compared with Abraxane(®). Colloids Surf B Biointerfaces 113C:43–50

    Google Scholar 

  • Bilati U, Allémann E, Doelker E (2005) Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci 24(1):67–75

    Article  CAS  PubMed  Google Scholar 

  • Bilensoy E, Sarisozen C, Esendağli G, Doğan AL, Aktaş Y, Sen M et al (2009) Intravesical cationic nanoparticles of chitosan and polycaprolactone for the delivery of Mitomycin C to bladder tumors. Int J Pharm 371(1–2):170–176

    Article  CAS  PubMed  Google Scholar 

  • Briancon S, Fessi H, Lecomte F, Lieto J (1999) Study of an original production process of nanoparticles by precipitation. Récents Prog. En Génie Procédés [Internet]. 1999 [cité 27 août 2014]. pp 157–164. Disponible sur: http://cat.inist.fr/?aModele=afficheN&cpsidt=1142605

  • Le Broc-Ryckewaert D, Carpentier R, Lipka E, Daher S, Vaccher C, Betbeder D et al (2013) Development of innovative paclitaxel-loaded small PLGA nanoparticles: study of their antiproliferative activity and their molecular interactions on prostatic cancer cells. Int J Pharm 454(2):712–719

    Article  PubMed  CAS  Google Scholar 

  • Budhian A, Siegel SJ, Winey KI (2007) Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content. Int J Pharm 336(2):367–375

    Article  CAS  PubMed  Google Scholar 

  • Budijono SJ, Shan J, Yao N, Miura Y, Hoye T, Austin RH et al Synthesis of stable block-copolymer-protected NaYF4:Yb3+, Er3+ up-converting phosphor nanoparticles. Chem Mater 22(2):311–318

    Google Scholar 

  • Campos EVR, de Melo NFS, de Paula E, Rosa AH, Fraceto LF (2013) Screening of conditions for the preparation of poly(-caprolactone) nanocapsules containing the local anesthetic articaine. J Colloid Sci Biotechnol 2(2):106–111

    Article  CAS  Google Scholar 

  • Charcosset C, Fessi H (2005) Preparation of nanoparticles with a membrane contactor. J Membr Sci 266(1–2):115–120

    Article  CAS  Google Scholar 

  • Chen T, D’Addio SM, Kennedy MT, Swietlow A, Kevrekidis IG, Panagiotopoulos AZ et al (2009) Protected peptide nanoparticles: experiments and brownian dynamics simulations of the energetics of assembly. Nano Lett 9(6):2218–2222

    Article  CAS  PubMed  Google Scholar 

  • Cheng F-Y, Wang SP-H, Su C-H, Tsai T-L, Wu P-C, Shieh D-B et al (2008) Stabilizer-free poly(lactide-co-glycolide) nanoparticles for multimodal biomedical probes. Biomaterials 29(13):2104–2112

    Article  CAS  PubMed  Google Scholar 

  • Cheow WS, Hadinoto K (2010) Enhancing encapsulation efficiency of highly water-soluble antibiotic in poly(lactic-co-glycolic acid) nanoparticles: Modifications of standard nanoparticle preparation methods. Colloids Surf Physicochem Eng Asp 370(1–3):79–86

    Article  CAS  Google Scholar 

  • Chorny M, Fishbein I, Danenberg HD, Golomb G (2002) Lipophilic drug loaded nanospheres prepared by nanoprecipitation: effect of formulation variables on size, drug recovery and release kinetics. J Control Release 83(3):389–400

    Article  CAS  PubMed  Google Scholar 

  • Chung JW, Neikirk C, Priestley RD (2013) Investigation of coumarin functionality on the formation of polymeric nanoparticles. J Colloid Interface Sci 396:16–22

    Article  CAS  PubMed  Google Scholar 

  • Contado C, Vighi E, Dalpiaz A, Leo E (2013) Influence of secondary preparative parameters and aging effects on PLGA particle size distribution: a sedimentation field flow fractionation investigation. Anal Bioanal Chem 405(2–3):703–711

    Article  CAS  PubMed  Google Scholar 

  • Costantino L, Gandolfi F, Tosi G, Rivasi F, Vandelli MA, Forni F (2005) Peptide-derivatized biodegradable nanoparticles able to cross the blood-brain barrier. J Control Release 108(1):84–96

    Article  CAS  PubMed  Google Scholar 

  • Cırpanlı Y, Allard E, Passirani C, Bilensoy E, Lemaire L, Calış S et al (2011) Antitumoral activity of camptothecin-loaded nanoparticles in 9L rat glioma model. Int J Pharm 403(1–2):201–206

    Article  PubMed  CAS  Google Scholar 

  • Danhier F, Lecouturier N, Vroman B, Jérôme C, Marchand-Brynaert J, Feron O et al (2009a) Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation. J Control Release 133(1):11–17

    Article  CAS  PubMed  Google Scholar 

  • Danhier F, Vroman B, Lecouturier N, Crokart N, Pourcelle V, Freichels H et al (2009b) Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with Paclitaxel. J Control Release 140(2):166–173

    Article  CAS  PubMed  Google Scholar 

  • Das S, Das J, Samadder A, Paul A, Khuda-Bukhsh AR (2013a) Strategic formulation of apigenin-loaded PLGA nanoparticles for intracellular trafficking, DNA targeting and improved therapeutic effects in skin melanoma in vitro. Toxicol Lett 223(2):124–138

    Article  CAS  PubMed  Google Scholar 

  • Das S, Das J, Samadder A, Paul A, Khuda-Bukhsh AR (2013b) Efficacy of PLGA-loaded apigenin nanoparticles in benzo[a]pyrene and ultraviolet-B induced skin cancer of mice: mitochondria mediated apoptotic signalling cascades. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc 62:670–680

    Article  CAS  Google Scholar 

  • Das Neves J, Amiji M, Bahia MF, Sarmento B (2013) Assessing the physical-chemical properties and stability of dapivirine-loaded polymeric nanoparticles. Int J Pharm 456(2):307–314

    Article  CAS  PubMed  Google Scholar 

  • Das S, Suresh PK (2011) Nanosuspension: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to amphotericin B. Nanomed Nanotechnol Biol Med 7(2):242–247

    Article  CAS  Google Scholar 

  • Das S, Suresh PK, Desmukh R (2010) Design of Eudragit RL 100 nanoparticles by nanoprecipitation method for ocular drug delivery. Nanomed Nanotechnol Biol Med 6(2):318–323

    Article  CAS  Google Scholar 

  • Davies JT (1975) Local eddy diffusivities related to «bursts» of fluid near solid walls. Chem Eng Sci 30(8):996–997

    Article  CAS  Google Scholar 

  • Dong Y, Feng S-S (2004) Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs. Biomaterials 25(14):2843–2849

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Feng S-S (2007) In vitro and in vivo evaluation of methoxy polyethylene glycol–polylactide (MPEG–PLA) nanoparticles for small-molecule drug chemotherapy. Biomaterials 28(28):4154–4160

    Article  CAS  PubMed  Google Scholar 

  • D’Addio SM, Prud’homme RK (2011) Controlling drug nanoparticle formation by rapid precipitation. Adv Drug Deliv Rev 63(6):417–426

    Article  PubMed  CAS  Google Scholar 

  • Eidi H, Joubert O, Attik G, Duval RE, Bottin MC, Hamouia A et al (2010) Cytotoxicity assessment of heparin nanoparticles in NR8383 macrophages. Int J Pharm 396(1–2):156–165

    Article  CAS  PubMed  Google Scholar 

  • Eidi H, Joubert O, Némos C, Grandemange S, Mograbi B, Foliguet B et al (2012) Drug delivery by polymeric nanoparticles induces autophagy in macrophages. Int J Pharm 422(1–2):495–503

    Article  CAS  PubMed  Google Scholar 

  • Esfandyari-Manesh M, Ghaedi Z, Asemi M, Khanavi M, Manayi A, Jamalifar H et al (2013) Study of antimicrobial activity of anethole and carvone loaded PLGA nanoparticles. J Pharm Res 7(4):290–295

    CAS  Google Scholar 

  • Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S (1989) Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 55(1):R1–R4

    Article  CAS  Google Scholar 

  • Flory PJ (1969) Statistical mechanics of chain molecules. Interscience Publishers, New York

    Google Scholar 

  • Fonseca C, Simões S, Gaspar R (2002) Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J Control Release 83(2):273–286

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Yang Y, Fan Y, Ma J (2006) Conjugates of poly(dl-lactic acid) with ethylenediamino or diethylenetriamino bridged bis(β-cyclodextrin)s and their nanoparticles as protein delivery systems. J Control Release 112(3):301–311

    Article  CAS  PubMed  Google Scholar 

  • Govender T, Stolnik S, Garnett MC, Illum L, Davis SS (1999) PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J Control Release 57(2):171–185

    Article  CAS  PubMed  Google Scholar 

  • Grando CRC, Guimarães CA, Mercuri LP, Matos JDR, Santana MHA (2013) Preparation and characterization of solid lipid nanoparticles loaded with racemic mitotane. J Colloid Sci Biotechnol 2(2):140–145

    Article  CAS  Google Scholar 

  • Guhagarkar SA, Gaikwad RV, Samad A, Malshe VC, Devarajan PV (2010) Polyethylene sebacate–doxorubicin nanoparticles for hepatic targeting. Int J Pharm 401(1–2):113–122

    Article  CAS  PubMed  Google Scholar 

  • Guhagarkar SA, Malshe VC, Devarajan PV (2009) Nanoparticles of polyethylene sebacate: a new biodegradable polymer. AAPS PharmSciTech 10(3):935–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G (2010) Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomed Nanotechnol Biol Med 6(2):324–333

    Article  CAS  Google Scholar 

  • Han S, Li M, Liu X, Gao H, Wu Y (2013) Construction of amphiphilic copolymer nanoparticles based on gelatin as drug carriers for doxorubicin delivery. Colloids Surf B Biointerfaces 102:833–841

    Article  CAS  PubMed  Google Scholar 

  • Holgado MA, Martin-banderas, Alvarez-fuentes, Duran-lobato, Prados J, Melguizo et al (2012) Cannabinoid derivate-loaded PLGA nanocarriers for oral administration: formulation, characterization, and cytotoxicity studies. Int J Nanomed 5793

    Google Scholar 

  • Hyvönen S, Peltonen L, Karjalainen M, Hirvonen J (2005) Effect of nanoprecipitation on the physicochemical properties of low molecular weight poly(l-lactic acid) nanoparticles loaded with salbutamol sulphate and beclomethasone dipropionate. Int J Pharm 295(1–2):269–281

    Article  PubMed  CAS  Google Scholar 

  • Johnson BK, Prud’homme RK (2003a) Flash nanoprecipitation of organic actives and block copolymers using a confined impinging jets mixer. Aust J Chem 56(10):1021–1024

    Article  CAS  Google Scholar 

  • Johnson BK, Prud’homme RK (2003b) Chemical processing and micromixing in confined impinging jets. AIChE J 49(9):2264–2282

    Article  CAS  Google Scholar 

  • Joshi SA, Chavhan SS, Sawant KK (2010) Rivastigmine-loaded PLGA and PBCA nanoparticles: preparation, optimization, characterization, in vitro and pharmacodynamic studies. Eur J Pharm Biopharm 76(2):189–199

    Article  CAS  PubMed  Google Scholar 

  • Kaewprapan K, Inprakhon P, Marie E, Durand A (2012) Enzymatically degradable nanoparticles of dextran esters as potential drug delivery systems. Carbohydr Polym 88(3):875–881

    Article  CAS  Google Scholar 

  • Karnik R, Gu F, Basto P, Cannizzaro C, Dean L, Kyei-Manu W et al (2008) Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett 8(9):2906–2912

    Article  CAS  PubMed  Google Scholar 

  • Katara R, Majumdar DK (2013) Eudragit RL 100-based nanoparticulate system of aceclofenac for ocular delivery. Colloids Surf B Biointerfaces 103:455–462

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Vishakante GD, Bathool A (2012) Development and characterization of brimonidine tartrate loaded eudragit nanosuspensions for ocular drug delivery. J Colloid Sci Biotechnol 1(1):122–128

    Article  CAS  Google Scholar 

  • Khayata N, Abdelwahed W, Chehna MF, Charcosset C, Fessi H (2012a) Preparation of vitamin E loaded nanocapsules by the nanoprecipitation method: from laboratory scale to large scale using a membrane contactor. Int J Pharm 423(2):419–427

    Article  CAS  PubMed  Google Scholar 

  • Khayata N, Abdelwahed W, Chehna MF, Charcosset C, Fessi H (2012b) Stability study and lyophilization of vitamin E-loaded nanocapsules prepared by membrane contactor. Int J Pharm 439(1–2):254–259

    Article  CAS  PubMed  Google Scholar 

  • Krishnakumar N, Sulfikkarali N, RajendraPrasad N, Karthikeyan S (2011) Enhanced anticancer activity of naringenin-loaded nanoparticles in human cervical (HeLa) cancer cells. Biomed Prev Nutr 1(4):223–231

    Article  Google Scholar 

  • Kumar V, Adamson DH (2010) Prud’homme RK. Fluorescent polymeric nanoparticles: aggregation and phase behavior of pyrene and amphotericin B molecules in nanoparticle cores. Small Weinh Bergstr Ger 6(24):2907–2914

    Article  CAS  Google Scholar 

  • Kumar A, Wonganan P, Sandoval MA, Li X, Zhu S, Cui Z (2012) Microneedle-mediated transcutaneous immunization with plasmid DNA coated on cationic PLGA nanoparticles. J Control Release 163(2):230–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamprecht A, Ubrich N, Yamamoto H, Schäfer U, Takeuchi H, Lehr CM et al (2001) Design of rolipram-loaded nanoparticles: comparison of two preparation methods. J Control Release 71(3):297–306

    Article  CAS  PubMed  Google Scholar 

  • Lassalle V, Ferreira ML (2007) PLA nano- and microparticles for drug delivery: an overview of the methods of preparation. Macromol Biosci 7(6):767–783

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ, Hong G-Y, Jeong Y-I, Kang M-S, Oh J-S, Song C-E et al (2012) Paclitaxel-incorporated nanoparticles of hydrophobized polysaccharide and their antitumor activity. Int J Pharm 433(1–2):121–128

    Article  CAS  PubMed  Google Scholar 

  • Legrand P, Lesieur S, Bochot A, Gref R, Raatjes W, Barratt G et al (2007) Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation. Int J Pharm 344(1–2):33–43

    Article  CAS  PubMed  Google Scholar 

  • Leo E, Brina B, Forni F, Vandelli MA (2004) In vitro evaluation of PLA nanoparticles containing a lipophilic drug in water-soluble or insoluble form. Int J Pharm 278(1):133–141

    Article  CAS  PubMed  Google Scholar 

  • Leroueil-Le Verger M, Fluckiger L, Kim Y-I, Hoffman M, Maincent P (1998) Preparation and characterization of nanoparticles containing an antihypertensive agent. Eur J Pharm Biopharm 46(2):137–143

    Article  CAS  PubMed  Google Scholar 

  • Letchford K, Burt H (2007) A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 65(3):259–269

    Article  CAS  PubMed  Google Scholar 

  • Letchford K, Liggins R, Wasan KM, Burt H (2009) In vitro human plasma distribution of nanoparticulate paclitaxel is dependent on the physicochemical properties of poly(ethylene glycol)-block-poly(caprolactone) nanoparticles. Eur J Pharm Biopharm 71(2):196–206

    Article  CAS  PubMed  Google Scholar 

  • Limayem Blouza I, Charcosset C, Sfar S, Fessi H (2006) Preparation and characterization of spironolactone-loaded nanocapsules for paediatric use. Int J Pharm 325(1–2):124–131

    Article  CAS  PubMed  Google Scholar 

  • Lince F, Marchisio DL, Barresi AA (2008) Strategies to control the particle size distribution of poly-ε-caprolactone nanoparticles for pharmaceutical applications. J Colloid Interface Sci 322(2):505–515

    Article  CAS  PubMed  Google Scholar 

  • Lince F, Marchisio DL, Barresi AA (2011) A comparative study for nanoparticle production with passive mixers via solvent-displacement: use of CFD models for optimization and design. Chem Eng Process Process Intensif 50(4):356–368

    Article  CAS  Google Scholar 

  • Lira AAM, Cordo PLA, Nogueira ECF, Almeida EDP, Junior RALC, Nunes RS et al (2013) Optimization of topical all-trans retinoic acid penetration using poly-d,l-lactide and poly-d,l-lactide-co-glycolide microparticles. J Colloid Sci Biotechnol 2(2):123–129

    Article  CAS  Google Scholar 

  • Liu Y, Li K, Liu B, Feng S-S (2010) A strategy for precision engineering of nanoparticles of biodegradable copolymers for quantitative control of targeted drug delivery. Biomaterials 31(35):9145–9155

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Li R, Zhu Z, Qian X, Guan W, Yu L et al (2012) Enhanced antitumor efficacy, biodistribution and penetration of docetaxel-loaded biodegradable nanoparticles. Int J Pharm 430(1–2):350–358

    Article  CAS  PubMed  Google Scholar 

  • Loyer P, Bedhouche W, Huang ZW, Cammas-Marion S (2013) Degradable and biocompatible nanoparticles decorated with cyclic RGD peptide for efficient drug delivery to hepatoma cells in vitro. Int J Pharm 454(2):727–737

    Article  CAS  PubMed  Google Scholar 

  • Mazzaferro S, Bouchemal K, Maksimenko A, Skanji R, Opolon P, Ponchel G (2012) Reduced intestinal toxicity of docetaxel loaded into mucoadhesive nanoparticles, in mouse xenograft model. J Colloid Sci Biotechnol 1(2):210–217

    Article  CAS  Google Scholar 

  • Mazzarino L, Travelet C, Ortega-Murillo S, Otsuka I, Pignot-Paintrand I, Lemos-Senna E et al (2012) Elaboration of chitosan-coated nanoparticles loaded with curcumin for mucoadhesive applications. J Colloid Interface Sci 370(1):58–66

    Article  CAS  PubMed  Google Scholar 

  • McManamey WJ, Davies JT, Woollen JM, Coe JR (1973) The influence of molecular diffusion on mass transfer between turbulent liquids. Chem Eng Sci 28(4):1061–1069

    Article  CAS  Google Scholar 

  • De Melo NFS, Campos EVR, de Paula E, Rosa AH, Fraceto LF (2013) Factorial design and characterization studies for articaine hydrochloride loaded alginate/chitosan nanoparticles. J Colloid Sci Biotechnol 2(2):146–152

    Article  CAS  Google Scholar 

  • Memisoglu-Bilensoy E, Vural I, Bochot A, Renoir JM, Duchene D, Hincal AA (2005) Tamoxifen citrate loaded amphiphilic beta-cyclodextrin nanoparticles: in vitro characterization and cytotoxicity. J Control Release 104(3):489–496

    Article  CAS  PubMed  Google Scholar 

  • De Miguel L, Noiray M, Surpateanu G, Iorga BI, Ponchel G (2013) Poly(γ-benzyl-l-glutamate)-PEG-alendronate multivalent nanoparticles for bone targeting. Int J Pharm 460(1–2):73–82

    PubMed  Google Scholar 

  • Miladi K, Sfar S, Fessi H, Elaissari A (2013) Drug carriers in osteoporosis: preparation, drug encapsulation and applications. Int J Pharm 445(1–2):181–195

    Article  CAS  PubMed  Google Scholar 

  • Moinard-Chécot D, Chevalier Y, Briançon S, Beney L, Fessi H (2008) Mechanism of nanocapsules formation by the emulsion–diffusion process. J Colloid Interface Sci 317(2):458–468

    Article  PubMed  CAS  Google Scholar 

  • Mondal N, Halder KK, Kamila MM, Debnath MC, Pal TK, Ghosal SK et al (2010) Preparation, characterization, and biodistribution of letrozole loaded PLGA nanoparticles in Ehrlich Ascites tumor bearing mice. Int J Pharm 397(1–2):194–200

    Article  CAS  PubMed  Google Scholar 

  • Mora-Huertas CE, Fessi H, Elaissari A (2010) Polymer-based nanocapsules for drug delivery. Int J Pharm 385(1–2):113–142

    Article  CAS  PubMed  Google Scholar 

  • Moraes CM, de Matos AP, de Paula E, Rosa AH, Fraceto LF (2009) Benzocaine loaded biodegradable poly-(d,l-lactide-co-glycolide) nanocapsules: factorial design and characterization. Mater Sci Eng B 165(3):243–246

    Article  CAS  Google Scholar 

  • Murakami H, Kawashima Y, Niwa T, Hino T, Takeuchi H, Kobayashi M (1997) Influence of the degrees of hydrolyzation and polymerization of poly(vinylalcohol) on the preparation and properties of poly(dl-lactide-co-glycolide) nanoparticle. Int J Pharm 149(1):43–49

    Article  CAS  Google Scholar 

  • Musumeci T, Bucolo C, Carbone C, Pignatello R, Drago F, Puglisi G (2013) Polymeric nanoparticles augment the ocular hypotensive effect of melatonin in rabbits. Int J Pharm 440(2):135–140

    Article  CAS  PubMed  Google Scholar 

  • Muthu MS, Rawat MK, Mishra A, Singh S (2009) PLGA nanoparticle formulations of risperidone: preparation and neuropharmacological evaluation. Nanomed Nanotechnol Biol Med 5(3):323–333

    Article  CAS  Google Scholar 

  • Nafee N, Youssef A, El-Gowelli H, Asem H, Kandil S (2013) Antibiotic-free nanotherapeutics: Hypericin nanoparticles thereof for improved in vitro and in vivo antimicrobial photodynamic therapy and wound healing. Int J Pharm 454(1):249–258

    Article  CAS  PubMed  Google Scholar 

  • Nagasawa H, Aoki N, Mae K (2005) Design of a new micromixer for instant mixing based on the collision of micro segments. Chem Eng Technol 28(3):324–330

    Article  CAS  Google Scholar 

  • Nehilla B, Bergkvist M, Popat K, Desai T (2008) Purified and surfactant-free coenzyme Q10-loaded biodegradable nanoparticles. Int J Pharm 348(1–2):107–114

    Article  CAS  PubMed  Google Scholar 

  • Noronha CM, Granada AF, de Carvalho SM, Lino RC, de OB Maciel MV, Barreto PLM (2013) Optimization of α-tocopherol loaded nanocapsules by the nanoprecipitation method. Ind Crops Prod 50:896–903

    Article  CAS  Google Scholar 

  • Paul A, Das S, Das J, Samadder A, Khuda-Bukhsh AR (2013) Cytotoxicity and apoptotic signalling cascade induced by chelidonine-loaded PLGA nanoparticles in HepG2 cells in vitro and bioavailability of nano-chelidonine in mice in vivo. Toxicol Lett 222(1):10–22

    Article  CAS  PubMed  Google Scholar 

  • Pavot V, Rochereau N, Primard C, Genin C, Perouzel E, Lioux T et al (2013) Encapsulation of Nod1 and Nod2 receptor ligands into poly(lactic acid) nanoparticles potentiates their immune properties. J Control Release 167(1):60–67

    Article  CAS  PubMed  Google Scholar 

  • Peltonen L, Aitta J, Hyvönen S, Karjalainen M, Hirvonen J (2004) Improved entrapment efficiency of hydrophilic drug substance during nanoprecipitation of poly(l)lactide nanoparticles. AAPS PharmSciTech 5(1):E16

    PubMed  Google Scholar 

  • Peracchia MT, Fattal E, Desmaële D, Besnard M, Noël JP, Gomis JM et al (1999) Stealth PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting. J Control Release 60(1):121–128

    Article  CAS  PubMed  Google Scholar 

  • Perret F, Duffour M, Chevalier Y, Parrot-Lopez H (2013a) Design, synthesis, and in vitro evaluation of new amphiphilic cyclodextrin-based nanoparticles for the incorporation and controlled release of acyclovir. Eur J Pharm Biopharm 83(1):25–32

    Article  CAS  PubMed  Google Scholar 

  • Perret F, Marminon C, Zeinyeh W, Nebois P, Bollacke A, Jose J et al (2013b) Preparation and characterization of CK2 inhibitor-loaded cyclodextrin nanoparticles for drug delivery. Int J Pharm 441(1–2):491–498

    Article  CAS  PubMed  Google Scholar 

  • Pertuit D, Moulari B, Betz T, Nadaradjane A, Neumann D, Ismaïli L et al (2007) 5-amino salicylic acid bound nanoparticles for the therapy of inflammatory bowel disease. J Control Release 123(3):211–218

    Article  CAS  PubMed  Google Scholar 

  • Peter Christoper GV, Vijaya Raghavan C, Siddharth K, Siva Selva Kumar M, Hari Prasad R Formulation and optimization of coated PLGA—zidovudine nanoparticles using factorial design and in vitro in vivo evaluations to determine brain targeting efficiency. Saudi Pharm J [Internet]. [cité 23 déc 2013]; Disponible sur: http://www.sciencedirect.com/science/article/pii/S1319016413000406

  • Plasari E, Grisoni PH, Villermaux J (1997) Influence of process parameters on the precipitation of organic nanoparticles by drowning-out. Chem Eng Res Des 75(2):237–244

    Article  CAS  Google Scholar 

  • Quintanar-Guerrero D, Allémann E, Doelker E, Fessi H (1997) A mechanistic study of the formation of polymer nanoparticles by the emulsification-diffusion technique. Colloid Polym Sci 275(7):640–647

    Article  CAS  Google Scholar 

  • Quintanar-Guerrero D, Allémann E, Fessi H, Doelker E (1998) Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev Ind Pharm 24(12):1113–1128

    Article  CAS  PubMed  Google Scholar 

  • Quintanar-Guerrero D, Fessi H, Allémann E, Doelker E (1996) Influence of stabilizing agents and preparative variables on the formation of poly(d,l-lactic acid) nanoparticles by an emulsification-diffusion technique. Int J Pharm 143(2):133–141

    Article  CAS  Google Scholar 

  • Raffin Pohlmann A, Weiss V, Mertins O, Pesce da Silveira N, Stanisçuaski Guterres S (2002) Spray-dried indomethacin-loaded polyester nanocapsules and nanospheres: development, stability evaluation and nanostructure models. Eur J Pharm Sci 16(4–5):305–312

    Article  CAS  PubMed  Google Scholar 

  • Rhee M, Valencia PM, Rodriguez MI, Langer R, Farokhzad OC, Karnik R (2011) Synthesis of size-tunable polymeric nanoparticles enabled by 3D hydrodynamic flow focusing in single-layer microchannels. Adv Mater 23(12):79–83

    Article  CAS  Google Scholar 

  • Rosset V, Ahmed N, Zaanoun I, Stella B, Fessi H, Elaissari A (2012) Elaboration of argan oil nanocapsules containing naproxen for cosmetic and transdermal local application. J Colloid Sci Biotechnol 1(2):218–224

    Article  CAS  Google Scholar 

  • Sanson C, Schatz C, Le Meins J-F, Soum A, Thévenot J, Garanger E et al (2010) A simple method to achieve high doxorubicin loading in biodegradable polymersomes. J Control Release 147(3):428–435

    Article  CAS  PubMed  Google Scholar 

  • Seju U, Kumar A, Sawant KK (2011) Development and evaluation of olanzapine-loaded PLGA nanoparticles for nose-to-brain delivery: In vitro and in vivo studies. Acta Biomater 7(12):4169–4176

    Article  CAS  PubMed  Google Scholar 

  • Seremeta KP, Chiappetta DA, Sosnik A (2013) Poly(ε-caprolactone), Eudragit® RS 100 and poly(ε-caprolactone)/Eudragit® RS 100 blend submicron particles for the sustained release of the antiretroviral efavirenz. Colloids Surf B Biointerfaces 102:441–449

    Article  CAS  PubMed  Google Scholar 

  • Shah U, Joshi G, Sawant K (2014) Improvement in antihypertensive and antianginal effects of felodipine by enhanced absorption from PLGA nanoparticles optimized by factorial design. Mater Sci Eng C 35:153–163

    Article  CAS  Google Scholar 

  • Shi L, Shan J, Ju Y, Aikens P, Prud’homme RK (2012) Nanoparticles as delivery vehicles for sunscreen agents. Colloids Surf Physicochem Eng Asp 396:122–129

    Article  CAS  Google Scholar 

  • Simşek S, Eroğlu H, Kurum B, Ulubayram K (2013) Brain targeting of Atorvastatin loaded amphiphilic PLGA-b-PEG nanoparticles. J Microencapsul 30(1):10–20

    Article  PubMed  CAS  Google Scholar 

  • Siqueira-Moura MP, Primo FL, Espreafico EM, Tedesco AC (2013) Development, characterization, and photocytotoxicity assessment on human melanoma of chloroaluminum phthalocyanine nanocapsules. Mater Sci Eng C 33(3):1744–1752

    Article  CAS  Google Scholar 

  • Stainmesse S, Orecchioni A-M, Nakache E, Puisieux F, Fessi H (1995) Formation and stabilization of a biodegradable polymeric colloidal suspension of nanoparticles. Colloid Polym Sci 273(5):505–511

    Article  CAS  Google Scholar 

  • Suen W-LL, Chau Y (2013) Specific uptake of folate-decorated triamcinolone-encapsulating nanoparticles by retinal pigment epithelium cells enhances and prolongs antiangiogenic activity. J Control Release 67(1):21–28

    Article  CAS  Google Scholar 

  • Tao Y, Ning M, Dou H (2013) A novel therapeutic system for malignant glioma: nanoformulation, pharmacokinetic, and anticancer properties of cell-nano-drug delivery. Nanomed Nanotechnol Biol Med févr 9(2):222–232

    Article  CAS  Google Scholar 

  • Thioune O, Fessi H, Devissaguet JP, Puisieux F (1997) Preparation of pseudolatex by nanoprecipitation: Influence of the solvent nature on intrinsic viscosity and interaction constant. Int J Pharm 146(2):233–238

    Article  CAS  Google Scholar 

  • Tosi G, Costantino L, Rivasi F, Ruozi B, Leo E, Vergoni AV et al (2007) Targeting the central nervous system: in vivo experiments with peptide-derivatized nanoparticles loaded with loperamide and rhodamine-123. J Control Release 122(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Tosi G, Vergoni AV, Ruozi B, Bondioli L, Badiali L, Rivasi F et al (2010) Sialic acid and glycopeptides conjugated PLGA nanoparticles for central nervous system targeting: in vivo pharmacological evidence and biodistribution. J Control Release 145(1):49–57

    Article  CAS  PubMed  Google Scholar 

  • Ubrich N, Schmidt C, Bodmeier R, Hoffman M, Maincent P (2005) Oral evaluation in rabbits of cyclosporin-loaded Eudragit RS or RL nanoparticles. Int J Pharm 288(1):169–175

    Article  CAS  PubMed  Google Scholar 

  • Valente I, Celasco E, Marchisio DL, Barresi AA (2012) Nanoprecipitation in confined impinging jets mixers: Production, characterization and scale-up of pegylated nanospheres and nanocapsules for pharmaceutical use. Chem Eng Sci 77:217–227

    Article  CAS  Google Scholar 

  • Van de Ven H, Paulussen C, Feijens PB, Matheeussen A, Rombaut P, Kayaert P et al (2012) PLGA nanoparticles and nanosuspensions with amphotericin B: potent in vitro and in vivo alternatives to Fungizone and Am Bisome. J Control Release 161(3):795–803

    Article  PubMed  CAS  Google Scholar 

  • Vila A, Gill H, McCallion O, Alonso MJ (2004) Transport of PLA–PEG particles across the nasal mucosa: effect of particle size and PEG coating density. J Control Release 98(2):231–244

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Feng S-S, Wang S, Chen Z-Y (2010) Evaluation of cationic nanoparticles of biodegradable copolymers as siRNA delivery system for hepatitis B treatment. Int J Pharm 400(1–2):194–200

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Li J, Wang C (2012) Hydrophilic and fluorescent colloidal nanorods of MWNTs as effective targeted drug carrier. J Colloid Sci Biotechnol 1(2):192–200

    Article  CAS  Google Scholar 

  • Wang G, Yu B, Wu Y, Huang B, Yuan Y, Liu CS (2013) Controlled preparation and antitumor efficacy of vitamin E TPGS-functionalized PLGA nanoparticles for delivery of paclitaxel. Int J Pharm 446(1–2):24–33

    Article  CAS  PubMed  Google Scholar 

  • Yedomon B, Fessi H, Charcosset C (2013) Preparation of bovine serum albumin (BSA) nanoparticles by desolvation using a membrane contactor: a new tool for large scale production. Eur J Pharm Biopharm 85(3):398–405

    Article  CAS  PubMed  Google Scholar 

  • Yenice I, Mocan MC, Palaska E, Bochot A, Bilensoy E, Vural I et al (2008) Hyaluronic acid coated poly-epsilon-caprolactone nanospheres deliver high concentrations of cyclosporine A into the cornea. Exp Eye Res 87(3):162–167

    Article  CAS  PubMed  Google Scholar 

  • Yuan X-B, Yuan Y-B, Jiang W, Liu J, Tian E-J, Shun H-M et al (2008) Preparation of rapamycin-loaded chitosan/PLA nanoparticles for immunosuppression in corneal transplantation. Int J Pharm 349(1–2):241–248

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Wang Y, Zheng C, Li C (2012) Phenylboronic acid-functionalized glycopolymeric nanoparticles for biomacromolecules delivery across nasal respiratory. Eur J Pharm Biopharm 82(1):76–84

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Yang M, Wang Q, Li Y, Guo R, Jiang X et al (2007) 10-Hydroxycamptothecin loaded nanoparticles: preparation and antitumor activity in mice. J Control Release 119(2):153–162

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhuo R (2005) Synthesis and in vitro drug release behavior of amphiphilic triblock copolymer nanoparticles based on poly(ethylene glycol) and polycaprolactone. Biomaterials 26(33):6736–6742

    Article  CAS  PubMed  Google Scholar 

  • Zili Z, Sfar S, Fessi H (2005) Preparation and characterization of poly-epsilon-caprolactone nanoparticles containing griseofulvin. Int J Pharm 294(1–2):261–267

    Article  CAS  PubMed  Google Scholar 

  • Zweers MLT, Grijpma DW, Engbers GHM, Feijen J (2003) The preparation of monodisperse biodegradable polyester nanoparticles with a controlled size. J Biomed Mater Res B Appl Biomater 66(2):559–566

    Article  PubMed  CAS  Google Scholar 

  • Çirpanli Y, Bilensoy E, Lale Doğan A, Çaliş S (2009) Comparative evaluation of polymeric and amphiphilic cyclodextrin nanoparticles for effective camptothecin delivery. Eur J Pharm Biopharm 73(1):82–89

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hatem Fessi or Abdelhamid Elaissari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Miladi, K., Sfar, S., Fessi, H., Elaissari, A. (2016). Nanoprecipitation Process: From Particle Preparation to In Vivo Applications. In: Vauthier, C., Ponchel, G. (eds) Polymer Nanoparticles for Nanomedicines. Springer, Cham. https://doi.org/10.1007/978-3-319-41421-8_2

Download citation

Publish with us

Policies and ethics