Skip to main content

Dark Matter

  • Chapter
  • First Online:
Search for Dark Matter with ATLAS

Part of the book series: Springer Theses ((Springer Theses))

  • 408 Accesses

Abstract

In this chapter, some essential background information for the interpretation of the data analysis presented in part IV is compiled. Section 3.1 gives a short introduction to cosmology, with more details on the derivation of the present abundance of a thermal relic in Sect. 3.2. In Sect. 3.3, some of the most striking evidence for the existence of dark matter is presented. Possible particle candidates are discussed in Sect. 3.4 and the status of the searches for generic weakly interacting massive particles is summarised in Sect. 3.5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    m is assumed to be large enough for the particle to be non-relativistic.

  2. 2.

    Since the universe is expanding, the density has to be considered w.r.t. to the ‘expanding volume’.

  3. 3.

    Cosmic variance refers to the uncertainty due to the fact that the sample size for observations on the scale of the entire universe is naturally very limited, as there is only one universe to be observed [23].

  4. 4.

    Theory allows CP violation in the strong interaction, but it is not observed in experiments. For example, one consequence would be a large electric dipole moment of the neutron, which is however measured to be consistent with 0.

References

  1. Bertone G, Hooper D, Silk J (2005) Particle dark matter: evidence, candidates and constraints. Phys Rep 405:279–390. doi:10.1016/j.physrep.2004.08.031. arXiv:hep-ph/0404175 [hep-ph]

    Google Scholar 

  2. Lemaître G (1931) Expansion of the universe, a homogeneous universe of constant mass and increasing radius accounting for the radial velocity of extra-galactic nebulae. MNRAS 91:483–490

    Article  ADS  MATH  Google Scholar 

  3. Hubble E (1929) A relation between distance and radial velocity among extra-galactic nebulae. Proc Natl Acad Sci 15:168–173. doi:10.1073/pnas.15.3.168

    Article  ADS  MATH  Google Scholar 

  4. Riess AG et al (2001) The farthest known supernova: support for an accelerating universe and a glimpse of the epoch of deceleration. Astrophys J 560:49–71. doi:10.1086/322348. arXiv:astro-ph/0104455

    Google Scholar 

  5. Friedman A (1999) On the curvature of space. Gen Relativ Gravit 31(12):1991–2000. doi:10.1023/A:1026751225741. ISSN: 0001-7701

    Google Scholar 

  6. Beringer J et al (2012) Review of particle physics. Phys Rev D 86(1):010001. doi:10.1103/PhysRevD.86.010001

    Article  ADS  Google Scholar 

  7. Bergstrom L (2000) Nonbaryonic dark matter: observational evidence and detection methods. Rep Prog Phys 63:793 (2000). doi:10.1088/0034-4885/63/5/2r3. arXiv:hep-ph/0002126 [hep-ph]

    Google Scholar 

  8. Kolb EW, Turner MS (1990) The early universe. Front Phys 69:1–547

    ADS  MathSciNet  MATH  Google Scholar 

  9. Hooper D (2009) TASI 2008 lectures on dark matter. Technical Report, pp 709–764. arXiv:0901.4090 [hep-ph]

  10. Salati P (2003) Quintessence and the relic density of neutralinos. Phys Lett B 571:121–131. doi:10.1016/j.physletb.2003.07.073. arXiv:astro-ph/0207396 [astro-ph]

    Google Scholar 

  11. Griest K, Seckel D (1991) Three exceptions in the calculation of relic abundances. Phys Rev D 43(10):3191–3203. doi:10.1103/PhysRevD.43.3191

    Article  ADS  Google Scholar 

  12. Begeman K, Broeils A, Sanders R (1991) Extended rotation curves of spiral galaxies: dark haloes and modified dynamics. Mon Not R Astron Soc 249:523

    Article  ADS  Google Scholar 

  13. Bahcall JN, Flynn C, Gould A (1992) Local dark matter from a carefully selected sample. Astrophys J 389:234–250. doi:10.1086/171201

    Article  ADS  Google Scholar 

  14. Oort JH (1932) The force exerted by the stellar system in the direction perpendicular to the galactic plane and some related problems. Bull Astron Inst Neth 6:249

    ADS  MATH  Google Scholar 

  15. Zwicky F (1933) Die Rotverschiebung von extragalaktischen Nebeln. Helv Phys Acta 6:110–127

    ADS  MATH  Google Scholar 

  16. Hupp E, Roy S, Watzke M (2006) NASA Finds Direct Proof of Dark Matter. Press Release. NASA Press Release 06-297. http://www.nasa.gov/home/hqnews/2006/aug/HQ_06297_CHANDRA_Dark_Matter.html

  17. Clowe D et al (2006) A direct empirical proof of the existence of dark matter. Astrophys J 648:L109–L113. doi:10.1086/508162. arXiv:astro-ph/0608407 [astro-ph]

    Google Scholar 

  18. Gamow G (1948) The origin of elements and the separation of galaxies. Phys Rev 74:505–506. doi:10.1103/PhysRev.74.505.2

    Article  ADS  Google Scholar 

  19. Penzias AA, Wilson RW (1965) A measurement of excess antenna temperature at 4080 Mc/s. Astrophys J 142:419–421. doi:10.1086/148307

    Article  ADS  Google Scholar 

  20. Dicke RH et al (1965) Cosmic black-body radiation. Astrophys J 142:414–419. doi:10.1086/148306

    Article  ADS  Google Scholar 

  21. Ade P et al (2013) Planck 2013 results. I. Overview of products and scientific results. ArXiv Pre-Prints. doi:10.1051/0004-6361/201321529. arXiv:1303.5062 [astro-ph.CO]

  22. The PLANCK Collaboration/ESA (2014) PLANCK Images. http://www.sciops.esa.int/index.php?project=PLANCK&page=Planck_images. Accessed August 2014

  23. Somerville RS et al (2004) Cosmic variance in the great observatories origins deep survey. Astrophys J 600:L171. doi:10.1086/378628. arXiv:astro-ph/0309071 [astro-ph]

    Google Scholar 

  24. Ade P et al (2013) Planck 2013 results. XV. CMB power spectra and likelihood. ArXiv Pre-Prints. arXiv:1303.5075 [astro-ph.CO]

  25. Komatsu E et al (2011) Seven-year wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation. Astrophys J Suppl Ser 192(2):18. http://stacks.iop.org/0067-0049/192/i=2/a=18. arXiv:1001.4538 [astro-ph.CO]

    Google Scholar 

  26. Milgrom M (1983) A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys J 270:365–370. doi:10.1086/161130

    Article  ADS  Google Scholar 

  27. Moffat J (2006) Scalar-tensor-vector gravity theory. JCAP 0603:004. doi:10.1088/1475-7516/2006/03/004. arXiv:gr-qc/0506021 [gr-qc]

    Google Scholar 

  28. Toth VT (2010) Cosmological consequences of modified gravity (MOG). ArXiv Pre-Prints. arXiv:1011.5174 [gr-qc]

  29. Dodelson S, Widrow LM (1994) Sterile-neutrinos as dark matter. Phys Rev Lett 72:17–20. doi:10.1103/PhysRevLett.72.17. arXiv:hep-ph/9303287 [hep-ph]

    Google Scholar 

  30. Abazajian K, Fuller GM, Patel M (2001) Sterile neutrino hot, warm, and cold dark matter. Phys Rev D 64:023501. doi:10.1103/PhysRevD.64.023501. arXiv:astro-ph/0101524 [astro-ph]

  31. Falk T, Olive KA, Srednicki M (1994) Heavy sneutrinos as dark matter. Phys Lett B 339:248–251. doi:10.1016/0370-2693(94)90639-4. arXiv:hep-ph/9409270 [hep-ph]

    Google Scholar 

  32. Covi L, Kim JE, Roszkowski L (1991) Axinos as cold dark matter. Phys Rev Lett 82:4180–4183. doi:10.1103/PhysRevLett.82.4180. arXiv:hep-ph/9905212 [hep-ph]

    Google Scholar 

  33. Covi L et al (2001) Axinos as dark matter. JHEP 0105:033. doi:10.1088/1126-6708/2001/05/033. arXiv:hep-ph/0101009 [hep-ph]

    Google Scholar 

  34. Covi L et al (2004) Axino dark matter and the CMSSM. JHEP 0406:003. doi:10.1088/1126-6708/2004/06/003. arXiv:hep-ph/0402240 [hep-ph]

    Google Scholar 

  35. Boehm C, Ensslin T, Silk J (2004) Can annihilating dark matter be lighter than a few GeVs? J Phys G 30:279–286. doi:10.1088/0954-3899/30/3/004. arXiv:astro-ph/0208458 [astro-ph]

    Google Scholar 

  36. Boehm C, Fayet P (2004) Scalar dark matter candidates. Nucl Phys B 683:219–263. doi:10.1016/j.nuclphysb.2004.01.015. arXiv:hep-ph/0305261 [hep-ph]

    Google Scholar 

  37. Birkedal-Hansen A, Wacker JG (2004) Scalar dark matter from theory space. Phys Rev D 69:065022. doi:10.1103/PhysRevD.69.065022. arXiv:hep-ph/0306161 [hep-ph]

  38. Cheng H-C, Low I (2003) TeV symmetry and the little hierarchy problem. JHEP 0309:051. doi:10.1088/1126-6708/2003/09/051. arXiv:hep-ph/0308199 [hep-ph]

    Google Scholar 

  39. Green AM (2012) Astrophysical uncertainties on direct detection experiments. Mod Phys Lett A 27(1230004):30004. doi:10.1142/S0217732312300042. arXiv:1112.0524 [astro-ph.CO]

    Google Scholar 

  40. Arneodo F (2013) Dark matter searches. ArXiv Pre-Prints (2013). arXiv:1301.0441 [astro-ph.IM]

  41. Bernabei R et al (2013) Final model independent result of DAMA/LIBRA-phase1. Eur Phys J C 73:2648. doi:10.1140/epjc/s10052-013-2648-7. arXiv:1308.5109 [astro-ph.GA]

  42. Aalseth CE et al (2013) CoGeNT: a search for low-mass dark matter using p-type point contact germanium detectors. PRD 88(1):012002. doi:10.1103/PhysRevD.88.012002. arXiv:1208.5737 [astro-ph.CO]

  43. Angloher G et al (2012) Results from 730 kg days of the CRESST-II dark matter search. Eur Phys J C 72:1971. doi:10.1140/epjc/s10052-012-1971-8. arXiv:1109.0702 [astro-ph.CO]

  44. CDMS Collaboration (2013). Silicon detector dark matter results from the final exposure of CDMS II. Phys Rev Lett 111:251301. doi:10.1103/PhysRevLett.111.251301. arXiv:1304.4279 [hep-ex]

  45. Aprile E et al (2012) Dark matter results from 225 live days of XENON100 data. Phys Rev Lett 109(18):181301. doi:10.1103/PhysRevLett.109.181301. arXiv:1207.5988 [astro-ph.CO]

  46. Akerib D et al (2014) First results from the LUX dark matter experiment at the sanford underground research facility. Phys Rev Lett 112:091303. doi:10.1103/PhysRevLett.112.091303. arXiv:1310.8214 [astro-ph.CO]

  47. Agnese R et al (2014) Search for low-mass wimps with superCDMS. Phys Rev Lett 112:241302. doi:10.1103/PhysRevLett.112.241302. arXiv:1402.7137 [hep-ex]

  48. Armengaud E et al (2011) Final results of the EDELWEISS-II WIMP search using a 4-kg array of cryogenic germanium detectors with interleaved electrodes. Phys Lett B 702(5):329–335. ISSN: 0370-2693. http://dx.doi.org/10.1016/j.physletb.2011.07.034

    Google Scholar 

  49. Schumann M (2014) Dual-phase liquid xenon detectors for dark matter searches. JINST 9:C08004. doi:10.1088/1748-0221/9/08/C08004. arXiv:1405.7600 [astro-ph.IM]

    Google Scholar 

  50. CDMS Collaboration (2010) Dark matter search results from the CDMS II experiment. Science 327:1619. doi:10.1126/science.1186112. arXiv:0912.3592 [astro-ph.CO]

  51. CDMS Collaboration (2012) Search for annual modulation in low-energy CDMS-II data. ArXiv Pre-Prints (2012). arXiv:1203.1309 [astro-ph.CO]

  52. Aprile E et al (2013) Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data. Phys Rev Lett 111(2)L021301. doi:10.1103/PhysRevLett.111.021301. arXiv:1301.6620 [astro-ph.CO]

  53. Felizardo M et al (2012) Final analysis and results of the phase II SIMPLE dark matter search. Phys Rev Lett 108(20):201302. doi:10.1103/PhysRevLett.108.201302. arXiv:1106.3014

  54. Archambault S et al (2012) Constraints on low-mass WIMP interactions on 19F from PICASSO. Phys Lett B 711:153–161. doi:10.1016/j.physletb.2012.03.078. arXiv:1202.1240 [hep-ex]

    Google Scholar 

  55. Behnke E et al (2012) First dark matter search results from a 4-kg CF3I bubble chamber operated in a deep underground site. Phys Rev D 86(5):052001. doi:10.1103/PhysRevD.86.052001. arXiv:1204.3094 [astro-ph.CO]

  56. Kim SC et al (2012) New limits on interactions between weakly interacting massive particles and nucleons obtained with CsI(Tl) crystal detectors. Phys Rev Lett 108(18):181301. doi:10.1103/PhysRevLett.108.181301. arXiv:1204.2646 [astro-ph.CO]

  57. The IceCube Collaboration (2012). Search for dark matter annihilations in the Sun with the 79-string IceCube detector. ArXiv Pre-Prints. arXiv:1212.4097 [astro-ph.HE]

  58. Abbasi R et al (2010) Calibration and characterization of the IceCube photomultiplier tube. Nucl Instrum Meth A 618:139–152. doi:10.1016/j.nima.2010.03.102. arXiv:1002.2442 [astro-ph.IM]

    Google Scholar 

  59. Fukuda S et al (2003) The Super-Kamiokande detector. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 501(2–3):418–462. http://dx.doi.org/10.1016/S0168-9002(03)00425-X. ISSN: 0168-9002

  60. Ackermann M et al (2014) Dark matter constraints from observations of 25 Milky Way satellite galaxies with the fermi large area telescope. Phys Rev D 89:042001. doi:10.1103/PhysRevD.89.042001. arXiv:1310.0828 [astro-ph.HE]

  61. Weniger C (2012) A tentative gamma-ray line from dark matter annihilation at the fermi large area telescope. JCAP 1208:007. doi:10.1088/1475-7516/2012/08/007. arXiv:1204.2797 [hep-ph]

    Google Scholar 

  62. Weniger C (2013) Gamma-ray lines in the Fermi-LAT data? ArXiv Pre-Prints. arXiv:1303.1798 [astro-ph.HE]

  63. Adriani O et al (2009) An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV. Nature 458:607–609. doi:10.1038/nature07942. arXiv:0810.4995 [astro-ph]

    Google Scholar 

  64. Ackermann M et al (2012) Measurement of separate cosmic-ray electron and positron spectra with the fermi large area telescope. Phys Rev Lett 108(1):011103. doi:10.1103/PhysRevLett.108.011103. arXiv:1109.0521 [astro-ph.HE]

  65. Aguilar M et al (2014) Electron and positron fluxes in primary cosmic rays measured with the alpha magnetic spectrometer on the international space station. Phys Rev Lett 113(12):121102. doi:10.1103/PhysRevLett.113.121102. http://link.aps.org/doi/10.1103/PhysRevLett.113.121102

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Pöttgen .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pöttgen, R. (2016). Dark Matter. In: Search for Dark Matter with ATLAS. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-41045-6_3

Download citation

Publish with us

Policies and ethics