Skip to main content

Asynchronous Gathering in Rings with 4 Robots

  • Conference paper
  • First Online:
Ad-hoc, Mobile, and Wireless Networks (ADHOC-NOW 2016)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 9724))

Included in the following conference series:

Abstract

In this paper we consider the gathering of oblivious mobile robots in a n-node ring. In this context, the single class of configurations left open in the most recent study [2] is \(\mathcal {SP}4\) (a special class of configurations with only four robots).

We present an algorithm to solve some of the most intricate configurations in \(\mathcal {SP}4\), those that can lead to a change of the axis of symmetry. Our approach lays the methodological bases for closing the remaining open cases for \(\mathcal {SP}4\) solvability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In our context of four robots, strong and weak multiplicity are equivalent. Given the knowledge of four robots, when observing a tower (multiple robots on the same node), one can always deduce the exact number of robots.

  2. 2.

    We use here the word list instead of set because we do not assume uniqueness of each configuration. The uniqueness is proved in Theorem 1.

  3. 3.

    The order of blocks is arbitrarily chosen.

  4. 4.

    Informally, if a configuration belongs to \(\mathcal {L}_1\) or \(\mathcal {L}_2\), robots decide to move according to our rules; otherwise they follow rules of [2].

References

  1. D’Angelo, G., Di Stefano, G., Navarra, A.: How to gather asynchronous oblivious robots on anonymous rings. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 326–340. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. D’Angelo, G., Di Stefano, G., Navarra, A.: Gathering on rings under the look-compute-move model. Distrib. Comput. 27(4), 255–285 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. D’Angelo, G., Di Stefano, G., Navarra, A.: Gathering six oblivious robots on anonymous symmetric rings. J. Discrete Algorithms 26, 16–27 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. D’Angelo, G., Di Stefano, G., Navarra, A., Nisse, N., Suchan, K.: Computing on rings by oblivious robots: a unified approach for different tasks. Algorithmica 72(4), 1055–1096 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. D’Angelo, G., Navarra, A., Nisse, N.: Gathering and exclusive searching on rings under minimal assumptions. In: Chatterjee, M., Cao, J., Kothapalli, K., Rajsbaum, S. (eds.) ICDCN 2014. LNCS, vol. 8314, pp. 149–164. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  6. Di Stefano, G., Montanari, P., Navarra, A.: About ungatherability of oblivious and asynchronous robots on anonymous rings. In: Lipták, Z., Smyth, W.F. (eds.) IWOCA 2015. LNCS, vol. 9538, pp. 136–147. Springer, Heidelberg (2016). doi:10.1007/978-3-319-29516-9_12

    Chapter  Google Scholar 

  7. Di Stefano, G., Navarra, A.: Optimal gathering of oblivious robots in anonymous graphs. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179, pp. 213–224. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots. Morgan & Claypool Publishers, San Rafael (2012)

    MATH  Google Scholar 

  9. Izumi, T., Kamei, S., Ooshita, F.: Time-optimal gathering algorithm of mobile robots with local weak multiplicity detection in rings. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E96–A(6), 1072–1080 (2013)

    Article  Google Scholar 

  10. Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S.: Asynchronous mobile robot gathering from symmetric configurations without global multiplicity detection. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 150–161. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S.: Gathering an even number of robots in an odd ring without global multiplicity detection. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 542–553. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: gathering of many asynchronous oblivious robots on a ring. Theor. Comput. Sci. 411(34–36), 3235–3246 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots in a ring. Theor. Comput. Sci. 390(1), 27–39 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mostéfaoui, A., Rajsbaum, S., Raynal, M., Roy, M.: Condition-based consensus solvability: a hierarchy of conditions and efficient protocols. Distrib. Comput. 17(1), 1–20 (2004)

    Article  MATH  Google Scholar 

  15. Ooshita, F., Tixeuil, S.: On the self-stabilization of mobile oblivious robots in uniform rings. Theor. Comput. Sci. 568, 84–96 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by LINCS and by JSPS KAKENHI Grant Number 26870228. The authors would like to thank the anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Bonnet .

Editor information

Editors and Affiliations

A Appendix: Case Studies

A Appendix: Case Studies

In this section we investigate the gathering for some specific values of ring size n. For each value we identify the configurations for which our algorithm solves the problem and the configurations that are still open. We consider here only rings of size \(n=4x+3\). For rings of size \(n=4x+1\), the set \(\mathcal {SP}4_g\) is empty and therefore we do not solve any \(\mathcal {SP}4\) configurations in that case.

1.1 A.1 Ring of Size 7

There are 4 towerless configurations (\(|\mathcal {I}| = 4\)). There is no obviously-non-gatherable configuration (\(|\mathcal {NG}|=0\)). The set of admissible configurations contains 1 asymmetrical and 1 symmetrical (\(|\mathcal {A}|=1+1=2\)). There are therefore 2 configurations of \(\mathcal {SP}4\):

  • \(C_1\) defined by \((a_1,b_1,a_1,c_1) = (0,3,0,0)\). \(C_1\not \in \mathcal {SP}4_g\) since \(c_1\ne b_1-1\).

  • \(C_2\) defined by \((a_2,b_2,a_2,c_2) = (1,1,1,0)\). \(C_2\in \mathcal {SP}4_g\).

There is an algorithm solving the gathering problem if the initial configuration belongs to \(\mathcal {A}\cup \{C_2\}\). The problem is open if the initial configuration is \(C_1\).

1.2 A.2 Ring of Size 11

\(|\mathcal {I}| = 20\), \(|\mathcal {NG}|=0\), \(|\mathcal {A}|=10+4=14\), and \(|\mathcal {SP}4|=6\) partitioned as follows:

  • \(C_1\) defined by \((a_1,b_1,a_1,c_1) = (0,7,0,0)\). \(C_1\not \in \mathcal {SP}4_g\) since \(c_1\ne b_1-1\).

  • \(C_2\) defined by \((a_2,b_2,a_2,c_2) = (1,5,1,0)\). \(C_2\not \in \mathcal {SP}4_g\) since \(c_2\ne b_2-1\).

  • \(C_3\) defined by \((a_3,b_3,a_3,c_3) = (0,5,0,2)\). \(C_3\not \in \mathcal {SP}4_g\) since \(c_3\ne b_3-1\).

  • \(C_4\) defined by \((a_4,b_4,a_4,c_4) = (2,3,2,0)\). \(C_4\not \in \mathcal {SP}4_g\) since \(c_4\ne b_4-1\).

  • \(C_5\) defined by \((a_5,b_5,a_5,c_5) = (3,1,3,0)\). \(C_5\in \mathcal {SP}4_g\).

  • \(C_6\) defined by \((a_6,b_6,a_6,c_6) = (1,3,1,2)\). \(C_6\not \in \mathcal {SP}4_g\) since \(a_6= b_6-2\).

There is an algorithm solving the gathering problem if the initial configuration belongs to \(\mathcal {A}\cup \{C_5\}\). The problem is open if the initial configuration is \(C_1\), \(C_2\), \(C_3\), \(C_4\), or \(C_6\).

1.3 A.3 Ring of Size \(n=4x+3\) for \(x\in \{1,2,3,\ldots \}\)

\(|\mathcal {I}| = \frac{(n^2-1)(n-3)}{48}\), \(|\mathcal {NG}|=0\), \(|\mathcal {A}|=\frac{(n-1)(n-3)(n-5)}{48}+\frac{(n-3)^2}{16}=\frac{(n-4)(n-3)(n+5)}{48}\), and \(|\mathcal {SP}4|=\frac{(n-3)(n+1)}{16}\) are partitioned as follows:

  • \(C_{b,c}\) defined by \((\frac{n-4-b-c}{2},b,\frac{n-4-b-c}{2},c)\) for \(b\in \{1,3,5,7,\ldots ,n-4\}\) and \(c\in \{0,2,4,\ldots ,b-1\}\). All \(C_{b,c}\) for \(c\ne b-1\) do not belong to \(\mathcal {SP}4_g\).

  • Depending on the parity of x, there exists or not a configuration \(C_{b,c}\) such that \(c=b-1\) and \(\frac{n-4-b-c}{2}=a=b-2\):

    • If x is odd; there is no such configuration. There are x configurations in \(\mathcal {SP}4_g\): \(C_b=C_{b,b-1}\) defined by \((\frac{n-3}{2}-b,b,\frac{n-3}{2}-b,b-1)\) for \(b\in \{1,3,\ldots ,2x-1\}\).

    • If x is even; there is a unique such configuration \(C_{b,c}\) for \(b=x+1\). There are \(x-1\) configurations in \(\mathcal {SP}4_g\):

      \(C_b=C_{b,b-1}\) defined by \((\frac{n-3}{2}-b,b,\frac{n-3}{2}-b,b-1)\) for \(b\in \{1,3,5,7,\ldots ,2x-1\}{\setminus }\{x+1\}\).

Note that two of our algorithms for \(C_b\) and \(C_{b'}\) are incompatible if \(b+b'=\frac{n+1}{2}=2x+2\). In conclusion there is an algorithm solving the gathering problem if the initial configuration belongs to the set:

  • \(\mathcal {A}\cup \{C_1\}\cup \{C_3 \text { or } C_{2x-1}\}\cup \{C_5 \text { or } C_{2x-3}\}\cup \{C_7 \text { or } C_{2x-5}\}\cup \ldots \cup \{C_x \text { or } C_{x+2}\}\), if x is odd.

  • \(\mathcal {A}\cup \{C_1\}\cup \{C_3 \text { or } C_{2x-1}\}\cup \{C_5 \text { or } C_{2x-3}\}\cup \{C_7 \text { or } C_{2x-5}\}\cup \ldots \cup \{C_{x-1} \text { or } C_{x+3}\}\), if x is even.

The problem is open if the initial configurations belong to \(\{C_{b,c}\}\) for \(c\ne b-1\), or if two incompatible configurations are included in the set of initial configurations (such as the set \(\{C_3,C_{2x-1}\}\)).

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bonnet, F., Potop-Butucaru, M., Tixeuil, S. (2016). Asynchronous Gathering in Rings with 4 Robots. In: Mitton, N., Loscri, V., Mouradian, A. (eds) Ad-hoc, Mobile, and Wireless Networks. ADHOC-NOW 2016. Lecture Notes in Computer Science(), vol 9724. Springer, Cham. https://doi.org/10.1007/978-3-319-40509-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40509-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40508-7

  • Online ISBN: 978-3-319-40509-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics