Skip to main content

Model Checking Parameterised Multi-token Systems via the Composition Method

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9706))

Abstract

We study the model checking problem of parameterised systems with an arbitrary number of processes, on arbitrary network-graphs, communicating using multiple multi-valued tokens, and specifications from indexed-branching temporal logic. We prove a composition theorem, in the spirit of Feferman-Vaught [21] and Shelah [31], and a finiteness theorem, and use these to decide the model checking problem. Our results assume two constraints on the process templates, one of which is the standard fairness assumption introduced in the cornerstone paper of Emerson and Namjoshi [18]. We prove that lifting any of these constraints results in undecidability. The importance of our work is three-fold: (i) it demonstrates that the composition method can be fruitfully applied to model checking complex parameterised systems; (ii) it identifies the most powerful model, to date, of parameterised systems for which model checking indexed branching-time specifications is decidable; (iii) it tightly marks the borders of decidability of this model.

Benjamin Aminof is supported by the Vienna Science and Technology Fund (WWTF) through grant ICT12-059. Sasha Rubin is a Marie Curie fellow of the Istituto Nazionale di Alta Matematica.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The direction-labels on the edges (also called a local orientation) represent network port numbers [14, 27]. All of our results also hold for the case that each edge has a single direction-label that combines send and receive directions, e.g., “clockwise”.

  2. 2.

    Indeed, there are infinitely many \(\textsf {CTL}^*_{1}\backslash \textsf {X}\) formulas that are pairwise logically-inequivalent. E.g., every finite word over \(\{0,1\}\) can be represented as an LTS, which itself can be axiomatised by a \(\textsf {CTL}^*_{1}\backslash \textsf {X}\) formula that uses the \(\mathbin {\mathsf {U}}\) operator.

  3. 3.

    The existence of a cutoff is independent of whether \(\mathcal {G}\) is computable. However, deciding whether a given number is a cutoff may not be easy. Consider for example the limited setting of [2]: there exists a computable \(\mathcal {G}\) and a fixed \({\mathbf {P}}\) such that it is impossible, given \(k,d \in \mathbb {N}\) (even fixing \(d = 1\)), to compute a cutoff [2]. Nonetheless, by [3], in the same setting (and we believe that also in our broader setting) one can compute a cutoff for many natural parameterized topologies \(\mathcal {G}\).

  4. 4.

    Fortunately, we only have to mimic such transitions that cross blocks in \(\rho ^t\).

  5. 5.

    The full version of this lemma contains two more conclusions.

  6. 6.

    Here, the empty set \(\emptyset \) is a letter in \(2^{[k]}\), not to be confused with the empty string \(\epsilon \).

  7. 7.

    Communication in [22] is by rendezvous, powerful enough to express token-passing.

  8. 8.

    Moreover, our work inherits from [2, 13] the non-uniformity of the decision problem. We leave for future work the problem of calculating explicit cutoffs for concrete classes of network-graphs, as was done in [3].

References

  1. Abdulla, P.A., Delzanno, G., Rezine, O., Sangnier, A., Traverso, R.: On the verification of timed ad hoc networks. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 256–270. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Aminof, B., Jacobs, S., Khalimov, A., Rubin, S.: Parameterized model checking of token-passing systems. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 262–281. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  3. Aminof, B., Kotek, T., Rubin, S., Spegni, F., Veith, H.: Parameterized model checking of rendezvous systems. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 109–124. Springer, Heidelberg (2014)

    Google Scholar 

  4. Aminof, B., Murano, A., Rubin, S., Zuleger, F.: Verification of asynchronous mobile-robots in partially-known environments. In: Chen, Q., Torroni, P., Villata, S., Hsu, J., Omicini, A. (eds.) PRIMA 2015. LNCS, vol. 9387, pp. 185–200. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25524-8_12

    Chapter  Google Scholar 

  5. Aminof, B., Murano, A., Rubin, S., Zuleger, F.: Automatic verification of multi-agent systems in parameterised grid-environments. In: AAMAS (2016)

    Google Scholar 

  6. Aminof, B., Rubin, S., Zuleger, F., Spegni, F.: Liveness of parameterized timed networks. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 375–387. Springer, Heidelberg (2015)

    Google Scholar 

  7. Aminof, B., Rubin, S., Zuleger, F.: On the expressive power of communication primitives in parameterised systems. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR-20 2015. LNCS, vol. 9450, pp. 313–328. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48899-7_22

    Chapter  Google Scholar 

  8. Apt, K., Kozen, D.: Limits for automatic verification of finite-state concurrent systems. Inf. Process. Lett. 22, 307–309 (1986)

    Article  MathSciNet  Google Scholar 

  9. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  10. Bloem, R., Jacobs, S., Khalimov, A., Konnov, I., Rubin, S., Veith, H., Widder, J.: Decidability of parameterized verification. Synth. Lect. Distrib. Comput. Theory 6(1), 1–170 (2015). M&C

    Article  Google Scholar 

  11. Browne, M.C., Clarke, E.M., Grumberg, O.: Reasoning about networks with many identical finite state processes. Inf. Comput. 81, 13–31 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chandy, K.M., Misra, J.: The drinking philosophers problem. ACM TOPLAS 6(4), 632–646 (1984)

    Article  Google Scholar 

  13. Clarke, E., Talupur, M., Touili, T., Veith, H.: Verification by network decomposition. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 276–291. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Das, S.: Mobile agents in distributed computing: network exploration. Bull. EATCS 109, 54–69 (2013)

    Google Scholar 

  15. Demri, S., Poitrenaud, D.: Verification of infinite-state systems. In: Haddad, S., Kordon, F., Pautet, L., Petrucci, L. (eds.) Models and Analysis in Distributed Systems, Chap. 8, pp. 221–269. Wiley (2011)

    Google Scholar 

  16. Emerson, E.A., Kahlon, V.: Parameterized model checking of ring-based message passing systems. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 325–339. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Emerson, E.A., Kahlon, V.: Model checking guarded protocols. In: LICS, pp. 361–370. IEEE (2003)

    Google Scholar 

  18. Emerson, E.A., Namjoshi, K.S.: Reasoning about rings. In: POPL, pp. 85–94 (1995). Journal version: Int. J. Found. Comp. Sci. 14(4) (2003)

    Google Scholar 

  19. Emerson, E.A., Sistla, A.: Symmetry and model checking. In: CAV, pp. 463–478 (1993)

    Google Scholar 

  20. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In: LICS, pp. 352–359. IEEE (1999)

    Google Scholar 

  21. Feferman, S., Vaught, R.L.: The first-order properties of algebraic systems. Fund. Math. 47, 57–103 (1959)

    MathSciNet  MATH  Google Scholar 

  22. German, S., Sistla, A.: Reasoning about systems with many processes. JACM 39(3), 675–735 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Combination methods for satisfiability and model-checking of infinite-state systems. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 362–378. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Herman, T.: Probabilistic self-stabilization. Inf. Process. Lett. 35(2), 63–67 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Parameterized model checking of fault-tolerant distributed algorithms by abstraction. In: FMCAD, pp. 201–209 (2013)

    Google Scholar 

  26. Kosowski, A.: Time and Space-Efficient Algorithms for Mobile Agents in an Anonymous Network. Habilitation, U. Sciences et Technologies - Bordeaux I (2013)

    Google Scholar 

  27. Kranakis, E., Krizanc, D., Rajsbaum, S.: Computing with mobile agents in distributed networks. In: Rajasekaran, S., Reif, J. (eds.) Handbook of Parallel Computing: Models, Algorithms, and Applications. CRC Press (2007)

    Google Scholar 

  28. Rabinovich, A.: On compositionality and its limitations. ACM TOCL 8(1), 4 (2007)

    Article  MathSciNet  Google Scholar 

  29. Rubin, S.: Parameterised verification of autonomous mobile-agents in static but unknown environments. In: AAMAS, pp. 199–208 (2015)

    Google Scholar 

  30. Shamir, S., Kupferman, O., Shamir, E.: Branching-depth hierarchies. ENTCS 39(1), 65–78 (2003)

    MATH  Google Scholar 

  31. Shelah, S.: The monadic theory of order. Ann. Math. 102, 379–419 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  32. Suzuki, I.: Proving properties of a ring of finite-state machines. Inf. Process. Lett. 28(4), 213–214 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Aminof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Aminof, B., Rubin, S. (2016). Model Checking Parameterised Multi-token Systems via the Composition Method. In: Olivetti, N., Tiwari, A. (eds) Automated Reasoning. IJCAR 2016. Lecture Notes in Computer Science(), vol 9706. Springer, Cham. https://doi.org/10.1007/978-3-319-40229-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40229-1_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40228-4

  • Online ISBN: 978-3-319-40229-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics