Skip to main content

Universal Meshes for the Simulation of Brittle Fracture and Moving Boundary Problems

  • Chapter
  • First Online:
Book cover Innovative Numerical Approaches for Multi-Field and Multi-Scale Problems

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 81))

Abstract

Universal meshes have recently appeared in the literature as a computationally efficient and robust paradigm for the generation of conforming simplicial meshes for domains with evolving boundaries. The main idea behind a universal mesh is to immerse the moving boundary in a background mesh (the universal mesh), and to produce a mesh that conforms to the moving boundary at any given time by adjusting a few elements of the background mesh. In this manuscript we present the application of universal meshes to the simulation of brittle fracturing. To this extent, we provide a high level description of a crack propagation algorithm and showcase its capabilities. Alongside universal meshes for the simulation of brittle fracture, we provide other examples for which universal meshes prove to be a powerful tool, namely fluid flow past moving obstacles. Lastly, we conclude the manuscript with some remarks on the current state of universal meshes and future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angelillo, M., Babilio, E., & Fortunato, A. (2012). Numerical solutions for crack growth based on the variational theory of fracture. Computational Mechanics, 50(3), 285–301.

    Article  MathSciNet  MATH  Google Scholar 

  2. Armando Duarte, C., & Tinsley Oden, J. (1996). An h-p adaptive method using clouds. Computer Methods in Applied Mechanics and Engineering, 139(1–4), 237–262.

    Google Scholar 

  3. Azócar, D., Elgueta, M., & Rivara, M. C. (2010). Automatic LEFM crack propagation method based on local Lepp-Delaunay mesh refinement. Advances in Engineering Software, 41, 111–119.

    Article  MATH  Google Scholar 

  4. Belytschko, T., & Black, T. (1999). Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 45(5), 601–620.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bittencourt, T. N., Wawrzynek, P. A., Ingraffea, A. R., & Sousa, J. L. (1996). Quasi-automatic simulation of crack propagation for 2D LEFM problems. Engineering Fracture Mechanics, 55, 321–334.

    Article  Google Scholar 

  6. Bourdin, B., Francfort, G. A., & Marigo, J.-J. (2000). Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids, 48(4), 797–826.

    Article  MathSciNet  MATH  Google Scholar 

  7. Camacho, G. T., & Ortiz, M. (1996). Computational modelling of impact damage in brittle materials. International Journal of Solids and Structures, 33(20–22), 2899–2938.

    Article  MATH  Google Scholar 

  8. Chiaramonte, M. M., Keer, L. M., & Lew, A. J. (2015). Crack path instabilities in thermoelasticity.

    Google Scholar 

  9. Chiaramonte, M. M., Shen, Y., Keer, L. M., & Lew, A. J. (2015). Computing stress intensity factors for curvilinear cracks. International Journal For Numerical Methods in Engineering.

    Google Scholar 

  10. Chiaramonte, M. M., Shen, Y., & Lew, A. J. (2015). The h-version of the method of auxiliary mapping for higher order solutions of crack and re-entrant corner problem.

    Google Scholar 

  11. Cotterell, B., & Rice, J. R. (1965). Slightly curved or kinked cracks. International Journal of Fracture Mechanics, 16, 155–168.

    Article  Google Scholar 

  12. Fraternali, F. (2007). Free discontinuity finite element models in two-dimensions for in-plane crack problems. Theoretical and Applied Fracture Mechanics, 47(3), 274–282.

    Article  Google Scholar 

  13. Gawlik, E. S., & Lew, A. J. (2014). High-order finite element methods for moving boundary problems with prescribed boundary evolution. Computer Methods in Applied Mechanics and Engineering, 278, 314–346.

    Article  MathSciNet  Google Scholar 

  14. Gawlik, E. S., & Lew, A. J. (2015). Supercloseness of orthogonal projections onto nearby finite element spaces. Mathematical Modelling and Numerical Analysis, 49, 559–576.

    Article  MathSciNet  MATH  Google Scholar 

  15. Gawlik, E. S. & Lew, A. J. (2015). Unified analysis of finite element methods for problems with moving boundaries. SIAM Journal on Numerical Analysis.

    Google Scholar 

  16. Gawlik, E. S., Kabaria, H., & Lew, A. J. (2015). High-order methods for low reynolds number flows around moving obstacles based on universal meshes. International Journal for Numerical Methods in Engineering.

    Google Scholar 

  17. Germanovich, L., Murdoch, L. C., & Robinowitz, M. (2014). Abyssal sequestration of nuclear waste and other types of hazardous waste.

    Google Scholar 

  18. Giacomini, A., & Ponsiglione, M. (2006). Discontinuous finite element approximation of quasistatic crack growth in nonlinear elasticity. Mathematical Models and Methods in Applied Sciences, 16(01), 77–118.

    Article  MathSciNet  MATH  Google Scholar 

  19. Gol’dstein, R. V., & Salganik, R. L. (1974). Brittle fracture of solids with arbitrary cracks. International Journal of Fracture, 10(4), 507–523.

    Article  Google Scholar 

  20. Ingraffea, A. R., & Grigoriu, M. (1990). Probabilistic fracture mechanics: A validation of predictive capability. Technical report, Cornell University.

    Google Scholar 

  21. Kabaria, H., & Lew, A. J. (In preparation). Universal meshes for smooth surfaces with no boundary in three dimensions. International Journal for Numerical Methods in Engineering.

    Google Scholar 

  22. Melenk, J. M., & Babuška, I. (1996). The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 139(1–4), 289–314.

    Article  MathSciNet  MATH  Google Scholar 

  23. Miehe, C., & Gürses, E. (2007). A robust algorithm for configurational-force-driven brittle crack propagation with r-adaptive mesh alignment. International Journal for Numerical Methods in Engineering, 72(2), 127–155.

    Article  MathSciNet  MATH  Google Scholar 

  24. Moes, N., Dolbow, J., & Belytschko, T. (1999). A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 46, 131–150.

    Article  MATH  Google Scholar 

  25. Muskhelishvili, N. I. (Ed.). (1977). Some Basic Problems of the Mathematical Theory of Elasticity: Fundamental Equations, Plane Theory of Elasticity, Torsion, and Bending (translated from Russian) (2nd ed.). Leyden, The Netherlands: Noordhoff International Publishing.

    Google Scholar 

  26. Negri, M. (2005). A discontinuous finite element approach for the approximation of free discontinuity problems. Advances in Mathematical Sciences and Applications, 15, 283–306.

    MathSciNet  MATH  Google Scholar 

  27. Ortiz, M. (1996). Computational micromechanics. Computational Mechanics, 18(5), 321–338.

    Article  MATH  Google Scholar 

  28. Pandolfi, A., & Ortiz, M. (1998). Solid modeling aspects of three-dimensional fragmentation. Engineering with Computers, 14(4), 287–308.

    Article  MATH  Google Scholar 

  29. Pandolfi, A., & Ortiz, M. (2012). An eigenerosion approach to brittle fracture. International Journal for Numerical Methods in Engineering, 92(8), 694–714.

    Article  MathSciNet  Google Scholar 

  30. Pandolfi, A., Krysl, P., & Ortiz, M. (1999). Finite element simulation of ring expansion and fragmentation: The capturing of length and time scales through cohesive models of fracture. International Journal of Fracture, 95(1–4), 279–297.

    Article  Google Scholar 

  31. Pandolfi, A., Li, B., & Ortiz, M. (2012). Modeling fracture by material-point erosion. International Journal of Fracture, 184(1–2), 3–16.

    Google Scholar 

  32. Phongthanapanich, S., & Dechaumphai, P. (2004). Adaptive Delaunay triangulation with object-oriented programming for crack propagation analysis. Finite Elements in Analysis and Design, 40, 1753–1771.

    Article  Google Scholar 

  33. Rangarajan, R. & Lew, A. J. (2013). Analysis of a method to parameterize planar curves immersed in triangulations. SIAM Journal on Numerical Analysis, 51(3), 1392–1420.

    Google Scholar 

  34. Rangarajan, R., & Lew, A. J. (2014). Universal meshes: A method for triangulating planar curved domains immersed in nonconforming triangulations. International Journal for Numerical Methods in Engineering, 98(4), 236–264.

    Article  MathSciNet  Google Scholar 

  35. Rangarajan, R., Chiaramonte, M. M., Hunsweck, M. J., Shen, Y., & Lew, A. J. (2014). Simulating curvilinear crack propagation in two dimensions with universal meshes. International Journal for Numerical Methods in Engineering.

    Google Scholar 

  36. Ruiz, G., Pandolfi, A., & Ortiz, M. (2001). Three dimensional cohesive modeling of dynamic mixed-mode fracture. International Journal for Numerical Methods in Engineering, 52(12), 97–120.

    Article  Google Scholar 

  37. Schmidt, B., Fraternali, F., & Ortiz, M. (2009). Eigenfracture: An eigendeformation approach to variational fracture. Multiscale Modeling & Simulation, 7(3), 1237–1266.

    Article  MathSciNet  MATH  Google Scholar 

  38. Yuse, A., & Sano, M. (1997). Instabilities of quasi-static crack patterns in quenched glass plates. Physica D: Nonlinear Phenomena, 108(4), 365–378.

    Article  Google Scholar 

  39. Zielonka, M. G., Ortiz, M., & Marsden, J. E. (2008). Variational r-adaption in elastodynamics. International Journal for Numerical Methods in Engineering, 74(7), 1162–1197.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the Office of Technology Licensing Stanford Graduate Fellowship to Maurizio M. Chiaramonte, the National Science Foundation Graduate Research Fellowship to Evan S. Gawlik, and the Franklin P. Johnson Jr. Stanford Graduate Fellowship to Hardik Kabaria. Adrian J. Lew acknowledges the support of National Science Foundation; contract/grant number CMMI-1301396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio M. Chiaramonte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chiaramonte, M.M., Gawlik, E.S., Kabaria, H., Lew, A.J. (2016). Universal Meshes for the Simulation of Brittle Fracture and Moving Boundary Problems. In: Weinberg, K., Pandolfi, A. (eds) Innovative Numerical Approaches for Multi-Field and Multi-Scale Problems. Lecture Notes in Applied and Computational Mechanics, vol 81. Springer, Cham. https://doi.org/10.1007/978-3-319-39022-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39022-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39021-5

  • Online ISBN: 978-3-319-39022-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics