Skip to main content

A Reconstruction of Quantum Mechanics

  • Chapter
  • First Online:

Part of the book series: The Frontiers Collection ((FRONTCOLL))

Abstract

Almost a century after the mathematical formulation of quantum mechanics, there is still no consensus on the interpretation of the theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A Boolean \(\sigma \)-complex is a closely connected generalization of a partial Boolean algebra (introduced in Kochen and Specker [9], and further studied in [10] and [11]).

  2. 2.

    The group \(\mathop {\mathrm{Aut}}\nolimits (Q)\) may, in fact, be construed as a topological group by defining, for each \(\epsilon >0\), an \(\epsilon \)-neighborhood of the identity to be \(\{ \sigma \mid |p_\sigma (x)- p(x)| < \epsilon \) for all x and \(p \}\). We may then directly speak of the continuity of the map \(\sigma \), in place of the condition that \(p_{\sigma _t}(x)\) is continuous in t.

  3. 3.

    More precisely, we have a projective unitary representation of \(\mathbb {R}\), but such a representation of \(\mathbb {R}\) is equivalent to a vector representation. (See, e.g., Varadarajan [5]).

  4. 4.

    Historically, of course, it was not such interferometry experiments, but rather spectroscopic experiments that lead Schrödinger to his equation.

  5. 5.

    This is reminiscent of Aristotle’s famous sea battle in De Interpretatione: “A sea battle must either take place tomorrow or not, but it is not necessary that it should take place tomorrow neither is it necessary that it should not take place, yet it is necessary that it either should or should not take place tomorrow.”

  6. 6.

    For details, see J. Conway and S. Kochen, The Geometry of the Quantum Paradoxes, Quantum [Un]speakables, R.A. Bertlemann, A. Zeilinger (ed.), Springer-Verlay, Berlin, 2002, 257.

References

  1. N. Bohr, Causality and complementarity. Phil. Sci. 4, 289 (1937)

    Article  Google Scholar 

  2. G. Birkhoff, J. von Neumann, The logic of quantum mechanics. Ann. Math. 37, 823 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  3. G.W. Mackey, Mathematical Foundations of Quantum Mechanics (Benjamin, Amsterdam, 1963)

    MATH  Google Scholar 

  4. C. Piron, Foundations of Quantum Physics (Benjamin, Reading, MA, 1976)

    Book  MATH  Google Scholar 

  5. V.S. Varadarajan, The Geometry of Quantum Theory, Van Nostrand (Princeton, NJ., 1968)

    Book  Google Scholar 

  6. A. Bohm, Quantum Mechanics: Foundations and Applications (Springer, New York, 2001)

    MATH  Google Scholar 

  7. S. Koppelberg, Handbook of Boolean Algebras, vol. 1 (North-Holland, Amsterdam, 1989)

    MATH  Google Scholar 

  8. J. Conway, S. Kochen, The strong free will theorem. Amer. Math. Soc. Not. 56, 226 (2009)

    MathSciNet  MATH  Google Scholar 

  9. S. Kochen, E.P. Specker, The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59 (1967)

    MathSciNet  MATH  Google Scholar 

  10. S. Kochen, E.P. Specker, Logical Structures Arising in Quantum Mechanics (Symposium at Berkeley, The Theory of Models, 1967), p. 177

    MATH  Google Scholar 

  11. S. Kochen, E.P. Specker, The Calculus of Partial Propositional Functions (Congress at Jerusalem, Methodology and Philosophy of Science, 1964), p. 45

    MATH  Google Scholar 

  12. E. Wrede, Über die Ablenkung von Molekularstrahlen elektrischer Dipolmolekule iminhomogenen elektrischen Feld. Z. Phys. A 44, 261 (1927)

    Article  Google Scholar 

  13. A.M. Gleason, Measures on the closed subspaces of a Hilbert space. J. Math. Mech. 6, 885 (1957)

    MathSciNet  MATH  Google Scholar 

  14. J.M. Jauch, Foundations of Quantum Mechanics (Addison-Wesley, Reading, MA, 1968)

    MATH  Google Scholar 

  15. V. Bargmann, Note on Wigner’s theorem on symmetry operations. J. Math. Phys. 5, 862 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. U. Uhlhorn, Representation of symmetric transformations in quantum mechanics. Arkiv Fysik 23, 307 (1963)

    MATH  Google Scholar 

  17. R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics, vol. 3 (Mass, Addison-Wesley, Reading, 1966)

    MATH  Google Scholar 

  18. E.G. Beltrametti, G. Cassinelli, The Logic of Quantum Mechanics (Addison-Wesley, Reading, Mass, 1981)

    MATH  Google Scholar 

  19. R.P. Feynman, Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20, 36 (1948)

    Article  ADS  MathSciNet  Google Scholar 

  20. M. Reck, A. Zeilinger, H.J. Bernstein, P. Bertani, Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58 (1994)

    Article  ADS  Google Scholar 

  21. M. Zukowski, A. Zeilinger, M.A. Horne, Realizable higher-dimensional two-particle entanglements via multiport beam splitters. Phys. Rev. A 55, 2564 (1997)

    Article  ADS  Google Scholar 

  22. D. Finkelstein, The logic of quantum physics. Trans. N. Y. Acad. Sci. 25, 621 (1963)

    Article  MathSciNet  Google Scholar 

  23. L.D. Faddeev, O.A. Yakubovskii, Lectures on Quantum Mechanics for Mathematics Students (American Mathematical Society, Providence, RI, 2009)

    Book  MATH  Google Scholar 

  24. N.D. Mermin. Phys. Rev. Lett. 65, 3373–3376 (1990)

    Google Scholar 

Download references

Acknowledgments

Mathematics Department, Princeton University. Dedicated to the memory of Ernst Specker. This work was partially supported by an award from the John Templeton Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon B. Kochen .

Editor information

Editors and Affiliations

Appendix: Summary Table of Concepts

Appendix: Summary Table of Concepts

 

 

General mechanics

Classical mechanics

Quantum mechanics

Properties

\(\sigma \)-complex

\(\sigma \)-algebra

\(\sigma \)-complex

 

\(Q = \cup B\), with B a \(\sigma \)-algebra

\(B(\Omega )\)

\(Q(\mathcal {H}\}\)

States

\(p: Q\rightarrow [0, 1]\)

\(p: B(\Omega )\rightarrow [0, 1]\)

\(w: \mathcal {H}\rightarrow \mathcal {H}\)

 

\(p\mid B\), a probability measure

a probability measure

Density operator

   

\(p(x)=\mathop {\mathrm{tr}}\nolimits (wx)\)

Pure states

Extreme point

 

1 dim operator

 

of convex set

\(\omega \in \Omega \)

i.e. unit \(\phi \in \mathcal {H}\)

   

\(p(x)=\left\langle x,x\phi \right\rangle \)

Observables

\(u: B(\mathbb {R})\rightarrow Q\)

\(f:\Omega \rightarrow \mathbb {R}\)

\(A: \mathcal {H}\rightarrow \mathcal {H}\)

 

homomorphism

Borel function

Hermitean operator

Symmetries

\(\sigma :Q \rightarrow Q\)

\(h:\Omega \rightarrow \Omega \)

\(u: \mathcal {H}\rightarrow \mathcal {H}\)

 

automorphism

canonical

unitary or

  

transformation

anti-unitary operator

   

\(\sigma (x)=uxu^{-1}\)

Dynamics

\(\sigma :\mathbb {R}\rightarrow \mathop {\mathrm{Aut}}\nolimits (Q)\)

Liouville equation

von Neumann

 

representation

\(\partial _t \rho =-[H, \rho ]\)

-Liouville equation

   

\(\partial _t w_t=-\frac{i}{\hbar } [ H, w_t] \)

Conditionalized states

\( p(x) \rightarrow p(x \mid y)\)

\(p(x) \rightarrow p(x \mid y)\)

\(w\rightarrow ywy / \mathop {\mathrm{tr}}\nolimits (wy) \)

 

for \(x,y\in B\) in Q

\(=p(x \wedge y)/p(y)\)

von Neumann

 

\(p(x \mid y)=p(x \mid y)/p(y)\)

 

-Lüders Rule

Combined systems

\(Q_1 \oplus Q_2\)

\(\Omega _1 \times \Omega _2\)

\(\mathcal {H}_1 \otimes \mathcal {H}_2\)

 

direct sum of

direct product of

tensor product of

 

\(\sigma \)-complexes

phase spaces

Hilbert spaces

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kochen, S.B. (2017). A Reconstruction of Quantum Mechanics. In: Bertlmann, R., Zeilinger, A. (eds) Quantum [Un]Speakables II. The Frontiers Collection. Springer, Cham. https://doi.org/10.1007/978-3-319-38987-5_12

Download citation

Publish with us

Policies and ethics