Skip to main content

A Multiagent Ab Initio Protein Structure Prediction Tool for Novices and Experts

  • Conference paper
  • First Online:
  • 1423 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9683))

Abstract

Proteins are vital to most biological processes by performing a variety of functions. Structure and function are intimately related, thus highlighting the importance of predicting a proteins 3-D conformation. We propose GMASTERS, a multiagent tool to address the protein structure prediction (PSP) problem. GMASTERS is a general-purpose ab initio graphical program based on cooperative agents that explore the protein conformational space using Monte Carlo and Simulated Annealing methods. The user can choose the abstraction level, energy function and force field to perform simulations. Because bioinformatics demands knowledge from diverse scientific fields, its tools are intrinsically complex. GMASTERS abstracts away some of this complexity while still allowing the user to learn and explore research hypotheses with the advantage of an embedded graphical interface. Although this abstraction comes at a cost, its performance is similar to state-of-the-art methods. Here, we describe GMASTERS and how to use it to explore the PSP problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lesk, A.M.: Introduction to Bioinformatics, 3rd edn. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  2. Clark, K., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Sayers, E.W.: Genbank. Nucleic Acids Res. 44, D67–D72 (2016)

    Article  Google Scholar 

  3. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Res. 28(1), 235–242 (2000)

    Article  Google Scholar 

  4. Pavlopoulou, A., Michalopoulos, I.: State-of-the-art bioinformatics protein structure prediction tools. Int. J. Mol. Med. 28(3), 295–310 (2011)

    Google Scholar 

  5. Dill, K., MacCallum, J.: The protein-folding problem, 50 years on. Science 338(6110), 1042–1046 (2012)

    Article  Google Scholar 

  6. Duan, Y., Kollman, P.A.: Computational protein folding: from lattice to all-atom. IBM Syst. J. 40(297–309), 0018–8670 (2001)

    Google Scholar 

  7. Amigoni, F., Schiaffonati, V.: Multiagent-based simulation in biology. In: Magnani, L., Li, P. (eds.) Model-based Reasoning in Science, Technology, and Medicine, SCI, vol. 64, pp. 179–191. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Tisseau, J.: Virtual reality, in virtuo autonomy. Ph.D. thesis, University of Rennes 1 (2001)

    Google Scholar 

  9. Nelson, D., Cox, M.: Lehninger Principles of Biochemistry, 5th edn. W. H. Freeman and Company, New York (2008)

    Google Scholar 

  10. Snow, C.D., Sorin, E.J., Rhee, Y.M., Pande, V.S.: How well can simulation predict protein folding kinetics and thermodynamics? Annu. Rev. Biophys. 34, 43–69 (2005). Annual Reviews, Palo Alto

    Article  Google Scholar 

  11. Zvelebil, M., Baum, J.: Understanding Bioinformatics. Garland Science, US (2007)

    MATH  Google Scholar 

  12. Crescenzi, P., Goldman, D., Papadimitriou, C., Piccolboni, A., Yannakakis, M.: On the complexity of protein folding. J. Comput. Biol. 5, 597–603 (1998)

    Article  MATH  Google Scholar 

  13. Levinthal, C.: Are there pathways for protein folding? J. Med. Phys. 65(1), 44–45 (1968)

    Google Scholar 

  14. Tramontano, A.: Integral and differential form of the protein folding problem. Phys. Life Rev. 1(2), 103–127 (2004)

    Article  Google Scholar 

  15. Helles, G.: A comparative study of the reported performance of ab initio protein structure prediction algorithms. J. Roy. Soc. Interface 5(21), 387–396 (2008)

    Article  Google Scholar 

  16. Wooldridge, M., Jennings, N.: Intelligent agents - theory and practice. Knowl. Eng. Rev. 10(2), 115–152 (1995)

    Article  Google Scholar 

  17. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall, Englewood Cliffs (2003)

    MATH  Google Scholar 

  18. Bradshaw, J.M.: An introduction to software agents. In: Bradshaw, J.M. (ed.) Software Agents, pp. 3–46. AAAI Press / The MIT Press, Cambridge (1997)

    Google Scholar 

  19. Tisue, S., Wilensky, U.: Netlogo: a simple environment for modeling complexity (2004)

    Google Scholar 

  20. Lipinski-Paes, T., Norberto de Souza, O.: MASTERS: a general sequence-based multiagent system for protein tertiary structure prediction. Electron. Notes Theor. Comput. Sci. 306, 45–59 (2014)

    Article  Google Scholar 

  21. Osguthorpe, D.J.: Ab initio protein folding. Curr. Opin. Struct. Biol. 10(2), 146–152 (2000)

    Article  Google Scholar 

  22. Roli, A., Milano, M.: MAGMA: a multiagent architecture for metaheuristics. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 34, 925–941 (2004)

    Article  Google Scholar 

  23. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    Article  Google Scholar 

  24. Allen, P., Tildesley, D.: Computer Simulation of Liquids. Oxford science publications, Clarendon Press (1987)

    MATH  Google Scholar 

  25. Schrödinger, L.L.C.: The PyMOL molecular graphics system, February 2016

    Google Scholar 

  26. Bachega, J.F.R., Timmers, L.F.S.M., Assirati, L., Bachega, L.R., Field, M.J., Wymore, T.: GTKDynamo: A PyMOL plug-in for QC/MM hybrid potential simulations. J. Comput. Chem. 34(25), 2190–2196 (2013)

    Article  Google Scholar 

  27. Dill, K.: Theory for the folding and stability of globular-proteins. Biochemistry 24(6), 1501–1509 (1985)

    Article  Google Scholar 

  28. William, E.H., Alantha, N.: Protein structure prediction with lattice models. Chapman & Hall/CRC Computer & Information Science Series, pp. 30-1–30-24. Chapman and Hall/CRC (2005)

    Google Scholar 

  29. Berger, B., Leighton, T.: Protein folding in the hydrophobic-hydrophilic (HP) model is NP-complete. J. Comput. Biol. 5(1), 27–40 (1998)

    Article  Google Scholar 

  30. Bachmann, M., Arkin, H., Janke, W.: Multicanonical study of coarse-grained off-lattice models for folding heteropolymers. Phys. Rev. E Stat. Nonlin Soft Matter Phys. 71(3), 031906 (2005). doi:10.1103/PhysRevE.71.031906

    Article  MathSciNet  Google Scholar 

  31. Hsu, H.P., Mehra, V., Grassberger, P.: Structure optimization in an off-lattice protein model. Physical Review E 68(3), 037703 (2003). doi:10.1103/PhysRevE.68.037703

    Article  Google Scholar 

  32. Stillinger, F., Head-Gordon, T.: Collective aspects of protein-folding illustrated by a toy model. Phys. Rev. E 52(3), 2872–2877 (1995)

    Article  Google Scholar 

  33. Irback, A., Peterson, C., Potthast, F., Sommelius, O.: Local interactions and protein folding: a three-dimensional off-lattice approach. J. Chem. Phys. 107(1), 273–282 (1997)

    Article  Google Scholar 

  34. Stillinger, F., Head-Gordon, T., Hirshfeld, C.: Toy model for protein-folding. Phys. Rev. E 48(2), 1469–1477 (1993)

    Article  Google Scholar 

  35. Krezel, A.M., Kasibhatla, C., Hidalgo, P., Mackinnon, R., Wagner, G.: Solution structure of the potassium channel inhibitor agitoxin 2: Caliper for probing channel geometry. Protein Sci. 4(8), 1478–1489 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants CNPq-305984/20128 and FAPERGS-TO2054-2551/13-0 to ONS, a CNPq Research Fellow. TLP and MSS are supported by CAPES, JFRB by a CAPES/FAPERGS DOCFIX postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osmar Norberto de Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Lipinski-Paes, T., Tanus, M.d.S.d.S., Bachega, J.F.R., Norberto de Souza, O. (2016). A Multiagent Ab Initio Protein Structure Prediction Tool for Novices and Experts. In: Bourgeois, A., Skums, P., Wan, X., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2016. Lecture Notes in Computer Science(), vol 9683. Springer, Cham. https://doi.org/10.1007/978-3-319-38782-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-38782-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-38781-9

  • Online ISBN: 978-3-319-38782-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics