Skip to main content

Nonlinear Optical Characterization of Membrane Protein Microcrystals and Nanocrystals

  • Chapter
The Next Generation in Membrane Protein Structure Determination

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 922))

Abstract

Nonlinear optical methods such as second harmonic generation (SHG) and two-photon excited UV fluorescence (TPE-UVF) imaging are promising approaches to address bottlenecks in the membrane protein structure determination pipeline. The general principles of SHG and TPE-UVF are discussed here along with instrument design considerations. Comparisons to conventional methods in high throughput crystallization condition screening and crystal quality assessment prior to X-ray diffraction are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson WF (2014) Structural genomics and drug discovery: methods and protocols, vol 1140. Humana Press Inc., Totowa

    Book  Google Scholar 

  • Begue NJ, Moad AJ, Simpson GJ (2009) Nonlinear optical stokes ellipsometry. 1. Theoretical framework. J Phys Chem C 113(23):10158–10165

    Article  CAS  Google Scholar 

  • Bingel-Erlenmeyer R, Olieric V, Grimshaw JPA, Gabadinho J, Wang X et al (2011) SLS crystallization platform at beamline X06DA—a fully automated pipeline enabling in situ X-ray diffraction screening. Cryst Growth Des 11(4):916–923

    Article  CAS  Google Scholar 

  • Bogan MJ (2013) X-ray free electron lasers motivate bioanalytical characterization of protein nanocrystals: serial femtosecond crystallography. Anal Chem 85(7):3464–3471

    Article  CAS  PubMed  Google Scholar 

  • Boyd RW (2008) Nonlinear optics, 3rd edn. Elsevier Inc, Cambridge

    Google Scholar 

  • Brodersen DE, Andersen GR, Andersen CBF (2013) Mimer: an automated spreadsheet-based crystallization screening system. Acta Crystallogr F Struct Biol Commun Acta 69(7):815–820

    Article  CAS  Google Scholar 

  • Chapman HNF, Fromme P, Barty A, White TA, Kirian RA et al (2011) Femtosecond X-ray protein nanocrystallography. Nature 470:73–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherezov V (2011) Lipidic cubic phase technologies for membrane protein structural studies. Curr Opin Struct Biol 21:559–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Closser RG, Gualtieri EJ, Newman JA, Simpson GJ (2013) Characterization of salt interferences in second-harmonic generation detection of protein crystals. J Appl Crystallogr 46(6):1903–1906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeWalt EL, Begue VJ, Ronau JA, Sullivan SZ, Das C, Simpson GJ (2013) Polarization-resolved second-harmonic generation microscopy as a method to visualize protein-crystal domains. Acta Crystallogr D Biol Crystallogr 69(1):74–81

    Article  CAS  PubMed  Google Scholar 

  • DeWalt EL, Sullivan SZ, Schmitt PD, Muir RD, Simpson GJ (2014) Polarization-modulated second harmonic generation ellipsometric microscopy at video rate. Anal Chem 86(16):8448–8456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fermann ME, Hartl I (2009) Ultrafast fiber laser technology. IEEE J Sel Top Quantum Electron 15(1):191–206

    Article  CAS  Google Scholar 

  • Forsythe E, Achari A, Pusey ML (2006) Trace fluorescent labeling for high-throughput crystallography. Acta Crystallogr D Biol Crystallogr 62(3):339–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Wang H, Shi R, Cheng J-X (2006) Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy. Opt Express 14(9):3942–3951

    Article  CAS  PubMed  Google Scholar 

  • Groves MR, Muller IB, Kreplin X, Muller-Dieckmann J (2007) A method for the general identification of protein crystals in crystallization experiments using a noncovalent fluorescent dye. Acta Crystallogr D Biol Crystallogr 63(4):526–535

    Article  CAS  PubMed  Google Scholar 

  • Haupert LM, Simpson GJ (2011) Screening of protein crystallization trials by second order nonlinear optical imaging of chiral crystals (SONICC). Methods 55(4):379–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haupert LM, DeWalt EL, Simpson GJ (2012) Modeling the SHG activities of diverse protein crystals. Acta Crystallogr D Biol Crystallogr 68(11):1513–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Judge RA, Swift K, Gonzalez C (2005) An ultraviolet fluorescence-based method for identifying and distinguishing protein crystals. Acta Crystallogr D Biol Crystallogr 61(1):60–66

    Article  CAS  PubMed  Google Scholar 

  • Kissick DJ, Gualtieri EJ, Simpson GJ, Cherezov V (2009) Nonlinear optical imaging of integral membrane protein crystals in lipidic mesophases. Anal Chem 82(2):491–497

    Article  CAS  Google Scholar 

  • Kissick DJ, Dettmar CM, Becker M, Mulichak AM, Cherezov V et al (2013) Towards protein-crystal centering using second-harmonic generation (SHG) microscopy. Acta Crystallogr D Biol Crystallogr D 69(5):843–851

    Article  CAS  Google Scholar 

  • Madden JT, DeWalt EL, Simpson GJ (2011) Two-photon excited UV fluorescence for protein crystal detection. Acta Crystallogr D Biol Crystallogr 67(10):839–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madden JT, Toth SJ, Dettmar CM, Newman JA, Oglesbee RA, Hedderich HG, Everly RM, Becker M, Ronau JA, Buchanan SK et al (2013) Integrated nonlinear optical imaging microscope for on-axis crystal detection and centering at a synchrotron beamline. J Synchrotron Radiat 20(4):531–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mader K, Marone F, Hintermuller C, Mikuljan G, Isenegger A, Stampanoni M (2011) High-throughput full-automatic synchrotron-based tomographic microscopy. J Synchrotron Radiat 18(2):117–124

    Article  PubMed  PubMed Central  Google Scholar 

  • Newman JA, Scarborough NM, Pogranichniy NR, Shrestha RK, Closser RG, Das C, Simpson GJ (2015) Intercalating dyes or enhanced contrast in second harmonic generation imaging of protein crystals. Acta Crystallogr D Biol Crystallogr 71(7):1471–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman JA, Zhang S, Sullivan SZ, Dow XY, Becker M, Sheedlo MJ, Stepanov S, Carlsen MS, Everly RM, Das C et al (2016) Guiding synchrotron Xray diffraction by multimodal video-rate protein crystal imaging. J Synchrotron Radiat 23(4)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padayatti P, Palczewska G, Sun W, Palczewski K, Salom D (2012) Imaging of protein crystals with two-photon microscopy. Biochemistry 51(8):1625–1637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redecke L, Nass K, DePonte DP, White TA, Rehders D et al (2013) Natively inhibited Trypanosoma brucei Cathepsin B structure determined by using an X-ray laser. Science 339:227–230

    Article  CAS  PubMed  Google Scholar 

  • Sanishvili R, Yoder DW, Pothineni SB, Rosenbaum G, Xu S, Vogt S, Stepanov S, Makarov OA, Corcoran S, Benn R et al (2011) Radiation damage in protein crystals is reduced with a micron-sized X-ray beam. Proc Natl Acad Sci U S A 108(15):6127–6132

    Article  PubMed  PubMed Central  Google Scholar 

  • Skarina T, Xu X, Evdokimova E, Savchenko A (2014) High-throughput crystallization screening. Methods Mol Bio 1140:159–168

    Article  CAS  Google Scholar 

  • Vernede X, Lavault B, Ohana J, Nurizzo D, Joly J et al (2006) UV laser-excited fluorescence as a tool for the visualization of protein crystals mounted in loops. Acta Crystallogr D Biol Crystallogr 62(3):253–261

    Article  CAS  PubMed  Google Scholar 

  • Wasserman SR, Koss JW, Sojitra ST, Morisco LL, Burley SK (2012) Rapid-access, high-throughput synchrotron crystallography for drug discovery. Trends Pharmacol Sci 33(5):261–267

    Article  CAS  PubMed  Google Scholar 

  • Wien F, Miles AJ, Lees JG, Vronning Hoffmann S, Wallace BA (2005) VUV irradiation effects on proteins in high-flux synchrotron radiation circular dichroism spectroscopy. J Synchrotron Radiat 12(4):517–523

    Article  CAS  PubMed  Google Scholar 

  • Yeates TO, Fam BC (1999) Protein crystals and their evil twins. Structure 7(2):R25–R29

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Zhu L-N, Guo R, Cui H-J, Ye S, Fang Q (2014) Nanoliter-scale protein crystallization and screening with a microfluidic droplet robot. Sci Rep 4:5046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge support from the National Institutes of Health (NIH) grants NIH-R01GM103401 and NIH-R01GM103910. We would also like to thank Ellen Gualtieri from Formulatrix for supplying the glucose isomerase crystal images in Fig. 7.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garth J. Simpson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Newman, J.A., Simpson, G.J. (2016). Nonlinear Optical Characterization of Membrane Protein Microcrystals and Nanocrystals. In: Moraes, I. (eds) The Next Generation in Membrane Protein Structure Determination. Advances in Experimental Medicine and Biology, vol 922. Springer, Cham. https://doi.org/10.1007/978-3-319-35072-1_7

Download citation

Publish with us

Policies and ethics