Skip to main content

Computing a Worm: Reverse-Engineering Planarian Regeneration

  • Chapter
  • First Online:

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 23))

Abstract

In order to understand and control complex biological systems, we need to unravel the information processing and computations required to regulate their dynamics. The development of a complete organism from a single cell or the restoration of lost structures and body parts after amputations require the coordination of millions of cells exchanging and processing information. Understanding these dynamic processes from the results of biological perturbation experiments represent an outstanding challenge due to the characteristic non-linear dynamics and feed-back loops of their molecular and biophysical regulatory mechanisms—an inverse problem with no analytical or computationally tractable solutions. To bridge the gap between molecular-level mechanistic data and systems-level outcomes, we have developed a computational methodology based on heuristic algorithms to automatically reverse-engineer dynamic regulatory networks directly from experimental results. Using this method, applied to problems of pattern regulation during metazoan regeneration, we inferred the first comprehensive regulatory network of planarian regeneration, capable of explaining the most relevant experiments of anterior-posterior specification during regeneration. Here we summarize our results and study the dynamics of the inferred regulatory model, unraveling the information processing and computations required to regenerate a correct morphology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aboukhatwa, E., Aboobaker, A.: An Introduction to Planarians and Their Stem Cells. Wiley, New York (2015). doi:10.1002/9780470015902.a0001097.pub2

    Book  Google Scholar 

  2. Aster, R.C., Thurber, C.H.: Parameter Estimation and Inverse Problems, 2nd edn. Academic Press, Waltham (2012)

    MATH  Google Scholar 

  3. Baguna, J., Saló, E., Auladell, C.: Regeneration and pattern formation in planarians. iii. evidence that neoblasts are totipotent stem-cells and the source of blastema cells. Development 107(1), 77–86 (1989)

    Google Scholar 

  4. Basso, K., Margolin, A.A., Stolovitzky, G., Klein, U., Dalla-Favera, R., Califano, A.: Reverse engineering of regulatory networks in human b cells. Nat. Genet 37(4), 382–390 (2005). doi:10.1038/ng1532

    Article  Google Scholar 

  5. Beane, W.S., Morokuma, J., Adams, D.S., Levin, M.: A chemical genetics approach reveals h, k-atpase-mediated membrane voltage is required for planarian head regeneration. Chem. Biol. 18(1), 77–89 (2011)

    Article  Google Scholar 

  6. Beane, W.S., Morokuma, J., Lemire, J.M., Levin, M.: Bioelectric signaling regulates head and organ size during planarian regeneration. Development 140(2), 313–22 (2013)

    Article  Google Scholar 

  7. Becker, K., Balsa-Canto, E., Cicin-Sain, D., Hoermann, A., Janssens, H., Banga, J.R., Jaeger, J.: Reverse-engineering post-transcriptional regulation of gap genes in drosophila melanogaster. PLOS Comput. Biol. 9(10), e1003,281 (2013). doi:10.1371/journal.pcbi.1003281

  8. Bonabeau, E.: From classical models of morphogenesis to agent-based models of pattern formation. Artif. Life 3(3), 191–211 (1997)

    Article  Google Scholar 

  9. Bongard, J., Lipson, H.: Automated reverse engineering of nonlinear dynamical systems. Proc. Natl. Acad. Sci. U. S. A 104(24), 9943–9948 (2007). doi:10.1073/pnas.0609476104

    Article  MATH  Google Scholar 

  10. Bonneau, R., Facciotti, M.T., Reiss, D.J., Schmid, A.K., Pan, M., Kaur, A., Thorsson, V., Shannon, P., Johnson, M.H., Bare, J.C., Longabaugh, W., Vuthoori, M., Whitehead, K., Madar, A., Suzuki, L., Mori, T., Chang, D.E., DiRuggiero, J., Johnson, C.H., Hood, L., Baliga, N.S.: A predictive model for transcriptional control of physiology in a free living cell. Cell 131(7), 1354–1365 (2007). doi:10.1016/j.cell.2007.10.053

    Article  Google Scholar 

  11. Bonneau, R., Reiss, D.J., Shannon, P., Facciotti, M., Hood, L., Baliga, N.S., Thorsson, V.: The inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol. 7(5) Artn R36 (2006). doi:10.1186/Gb-2006-7-5-R36

  12. Botman, D., Röttinger, E., Martindale, M.Q., de Jong, J., Kaandorp, J.A.: A computational approach towards a gene regulatory network for the developing Nematostella vectensis. PLOS ONE 9(7), e103341 (2014). doi:10.1371/journal.pone.0103341

  13. Brockes, J.P., Kumar, A.: Appendage regeneration in adult vertebrates and implications for regenerative medicine. Science 310(5756), 1919–1923 (2005). doi:10.1126/science.1115200

  14. Cantone, I., Marucci, L., Iorio, F., Ricci, M.A., Belcastro, V., Bansal, M., Santini, S., di Bernardo, M., di Bernardo, D., Cosma, M.P.: A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell 137(1), 172–181 (2009). doi:10.1016/j.cell.2009.01.055

  15. Carroll, S.: Endless Forms Most Beautiful: The New Science of Evo Devo and the Making of the Animal Kingdom. W. W. Norton & Company, New York (2005)

    Google Scholar 

  16. Carroll, S., Grenier, J., Weatherbee, S.: From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design. Wiley, Blackwell, New York (2004)

    Google Scholar 

  17. Chara, O., Tanaka, E.M., Brusch, L.: Mathematical Modeling of Regenerative Processes, 108, 283–317 (2014). doi:10.1016/B978-0-12-391498-9.00011-5

  18. Cohen, I.R., Harel, D.: Explaining a complex living system: dynamics, multi-scaling and emergence. J. Royal Soc. Interface 4(13), 175–182 (2007). doi:10.1098/rsif.2006.0173

    Article  Google Scholar 

  19. Corning, W.C., Freed, S.: Planarian behaviour and biochemistry. Nature 219(160), 1227–9 (1968)

    Article  Google Scholar 

  20. Crombach, A., Wotton, K.R., Cicin-Sain, D., Ashyraliyev, M., Jaeger, J.: Efficient reverse-engineering of a developmental gene regulatory network. PLOS Comput. Biol. 8(7), e1002589 (2012). doi:10.1371/journal.pcbi.1002589

  21. Daniel, R., Rubens, J.R., Sarpeshkar, R., Lu, T.K.: Synthetic analog computation in living cells. Nature 497(7451), 619–23 (2013). doi:10.1038/nature12148

    Article  Google Scholar 

  22. Edwards, J.S., Palsson, B.O.: The escherichia coli mg1655 in silico metabolic genotype: Its definition, characteristics, and capabilities. Proc. Natl. Acad. Sci. U. S. A. 97(10), 5528–5533 (2000). doi:10.1073/pnas.97.10.5528

    Article  Google Scholar 

  23. Ellner, S.P., Guckenheimer, J.: Dynamic Models in Biology. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  24. Faith, J.J., Hayete, B., Thaden, J.T., Mogno, I., Wierzbowski, J., Cottarel, G., Kasif, S., Collins, J.J., Gardner, T.S.: Large-scale mapping and validation of escherichia coli transcriptional regulation from a compendium of expression profiles. PLOS Biol. 5(1), e8 (2007). doi:10.1371/journal.pbio.0050008

    Article  Google Scholar 

  25. Fomekong-Nanfack, Y., Kaandorp, J.A., Blom, J.: Efficient parameter estimation for spatio-temporal models of pattern formation: case study of drosophila melanogaster. Bioinformatics 23(24), 3356–3363 (2007). doi:10.1093/bioinformatics/btm433

    Article  Google Scholar 

  26. Ganguly, N., Sikdar, B.K., Deutsch, A., Canright, G., Chaudhuri, P.: A Survey on Cellular Automata. Report, Centre for High Performance Computing, Dresden University of Technology (2003)

    Google Scholar 

  27. Gardner, T.S., di Bernardo, D., Lorenz, D., Collins, J.J.: Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301(5629), 102–105 (2003). doi:10.1126/science.1081900

    Article  Google Scholar 

  28. Gurley, K.A., Rink, J.C.: Sanchez Alvarado, A.: \(\beta \)-catenin defines head versus tail identity during planarian regeneration and homeostasis. Science 319(5861), 323–327 (2008)

    Article  Google Scholar 

  29. Gursky, V.V., Panok, L., Myasnikova, E.M., Manu Samsonova, M.G., Reinitz, J., Samsonov, A.M.: Mechanisms of gap gene expression canalization in the drosophila blastoderm. BMC Syst. Biol. 5, 118 (2011). doi:10.1186/1752-0509-5-118

  30. Hecker, M., Lambeck, S., Toepfer, S., van Someren, E., Guthke, R.: Gene regulatory network inference: Data integration in dynamic models—review. Biosystems 96(1), 86–103 (2009). doi:10.1016/j.biosystems.2008.12.004

    Article  Google Scholar 

  31. Hunter, L.: Artificial intelligence and molecular biology. AI Mag. 11(5), 27–36 (1990)

    Google Scholar 

  32. Iglesias, M., Gomez-Skarmeta, J.L., Saló, E., Adell, T.: Silencing of smed-\(\beta \)-catenin generates radial-like hypercephalized planarians. Development 135(7), 1215–1221 (2008)

    Article  Google Scholar 

  33. Ilsley, G.R., Fisher, J., Apweiler, R., DePace, A.H., Luscombe, N.M.: Cellular resolution models for even skipped regulation in the entire Drosophila embryo, vol. 2 (2013). doi:10.7554/eLife.00522

  34. Jaeger, J., Blagov, M., Kosman, D., Kozlov, K.N., Manu, Myasnikova, E., Surkova, S., Vanario-Alonso, C.E., Samsonova, M., Sharp, D.H., Reinitz, J.: Dynamical analysis of regulatory interactions in the gap gene system of drosophila melanogaster. Genetics 167(4), 1721–1737 (2004). doi:10.1534/genetics.104.027334

  35. Jaeger, J., Crombach, A.: Life attractors: understanding developmental systems through reverse engineering and in silico evolution, Adv. Exp. Med. Biol. 751, 93–119 (2012)

    Google Scholar 

  36. Jaeger, J., Sharpe, J.: On the Concept of Mechanism in Development. Oxford University Press, Oxford (2014)

    Google Scholar 

  37. Jaeger, J., Surkova, S., Blagov, M., Janssens, H., Kosman, D., Kozlov, K.N., Manu, Myasnikova, E., Vanario-Alonso, C.E., Samsonova, M., Sharp, D.H., Reinitz, J.: Dynamic control of positional information in the early drosophila embryo. Nature 430(6997), 368–371 (2004). doi:10.1038/Nature02678

  38. Kakugawa, S., Langton, P.F., Zebisch, M., Howell, S.A., Chang, T.H., Liu, Y., Feizi, T., Bineva, G., O/’Reilly, N., Snijders, A.P., Jones, E.Y., Vincent, J.P.: Notum deacylates wnt proteins to suppress signalling activity. Nature 519(7542), 187–192 (2015). doi:10.1038/nature14259

  39. Koza, J.: Genetic Programming: On the Programming of Computers by Means of Natural Selection (Complex Adaptive Systems). The MIT Press, Cambridge (1992)

    Google Scholar 

  40. Levin, M.: Endogenous bioelectrical networks store non-genetic patterning information during development and regeneration. J. Physiol. 592(11), 2295–2305 (2014). doi:10.1113/jphysiol.2014.271940

    Article  Google Scholar 

  41. Lobikin, M., Lobo, D., Blackiston, D., Martyniuk, C., Tkachenko, E., Levin, M.: Serotonergic regulation of melanocyte conversion: a bioelectrically regulated network for stochastic all-or-none hyperpigmentation. Sci. Signal. 8(397), ra99 (2015)

    Google Scholar 

  42. Lobo, D., Beane, W., Levin, M.: Modeling planarian regeneration: a primer for reverse-engineering the worm. PLOS Comput. Biol. 8(4), e1002481 (2012). doi:10.1371/journal.pcbi.1002481

  43. Lobo, D., Feldman, E.B., Shah, M., Malone, T.J., Levin, M.: A bioinformatics expert system linking functional data to anatomical outcomes in limb regeneration. Regeneration 1(2), 37–56 (2014). doi:10.1002/reg2.13

    Article  Google Scholar 

  44. Lobo, D., Feldman, E.B., Shah, M., Malone, T.J., Levin, M.: Limbform: a functional ontology-based database of limb regeneration experiments. Bioinformatics 30(24), 3598–600 (2014). doi:10.1093/bioinformatics/btu582

    Article  Google Scholar 

  45. Lobo, D., Levin, M.: Inferring regulatory networks from experimental morphological phenotypes: a computational method reverse-engineers planarian regeneration. PLOS Comput. Biol. 11(6), e1004295 (2015). doi:10.1371/journal.pcbi.1004295

  46. Lobo, D., Malone, T.J., Levin, M.: Planform: an application and database of graph-encoded planarian regenerative experiments. Bioinformatics 29(8), 1098–1100 (2013). doi:10.1093/bioinformatics/btt088

    Article  Google Scholar 

  47. Lobo, D., Malone, T.J., Levin, M.: Towards a bioinformatics of patterning: a computational approach to understanding regulative morphogenesis. Biol. Open 2(2), 156–169 (2013). doi:10.1242/bio.20123400

    Article  Google Scholar 

  48. Lobo D., Morokuma, J., Levin, M.: Computational discovery and in vivo validation of hnf4 as a regulatory gene in planarian regeneration. Bioinformatics, in press. doi: 10.1093/bioinformatics/btw299

  49. Lobo, D., Solano, M., Bubenik, G.A., Levin, M.: A linear-encoding model explains the variability of the target morphology in regeneration. J. R. Soc. Interface 11(92) (2014). doi:10.1098/rsif.2013.0918

  50. Lobo, D., Vico, F., Dassow, J.: Graph grammars with string-regulated rewriting. Theor. Comput. Sci. 412(43), 6101–6111 (2011). doi:10.1016/j.tcs.2011.07.004

    Article  MathSciNet  MATH  Google Scholar 

  51. Lobo, D., Vico, F.J.: Evolutionary development of tensegrity structures. Biosystems 101(3), 167–176 (2010). doi:10.1016/j.biosystems.2010.06.005

    Article  Google Scholar 

  52. Manu, Surkova, S., Spirov, A.V., Gursky, V.V., Janssens, H., Kim, A.R., Radulescu, O., Vanario-Alonso, C.E., Sharp, D.H., Samsonova, M., Reinitz, J.: Canalization of gene expression and domain shifts in the drosophila blastoderm by dynamical attractors. PLOS Comput. Biol. 5(3), e1000303 (2009). doi:10.1371/journal.pcbi.1000303

  53. Manu, Surkova: S., Spirov, A.V., Gursky, V.V., Janssens, H., Kim, A.R., Radulescu, O., Vanario-Alonso, C.E., Sharp, D.H., Samsonova, M., Reinitz, J.: Canalization of gene expression in the drosophila blastoderm by gap gene cross regulation. Plos Biol. 7(3), 591–603 ARTN e1000049 (2009). doi:10.1371/journal.pbio.1000049

  54. Marcus, G.: The Birth Of The Mind: How A Tiny Number of Genes Creates the Complexities of Human Thought. Basic Books, New York (2003)

    Google Scholar 

  55. Margolin, A.A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Dalla Favera, R., Califano, A.: Aracne: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform. 7 Suppl 1, S7 (2006). doi:10.1186/1471-2105-7-S1-S7

  56. McCarthy, J.: The Inversion of Functions Defined by Turing Machines, vol. 34, pp. 177–181. Princeton University Press, Princeton (1956)

    Google Scholar 

  57. Meinhardt, H.: Models of Biological Pattern Formation. Academic Press, Cambridge (1982)

    Google Scholar 

  58. Meinhardt, H.: Beta-catenin and axis formation in planarians. Bioessays 31(1), 5–9 (2009)

    Article  MathSciNet  Google Scholar 

  59. Meinhardt, H.: Models for the generation and interpretation of gradients. Cold Spring Harb. Perspect. Biol. 1(4) (2009). doi:10.1101/cshperspect.a001362

  60. Mitchell, M.: Biological computation. Comput. J. 55(7), 852–855 (2012). doi:10.1093/comjnl/bxs078

    Article  Google Scholar 

  61. Molinelli, E.J., Korkut, A., Wang, W., Miller, M.L., Gauthier, N.P., Jing, X., Kaushik, P., He, Q., Mills, G., Solit, D.B., Pratilas, C.A., Weigt, M., Braunstein, A., Pagnani, A., Zecchina, R., Sander, C.: Perturbation biology: Inferring signaling networks in cellular systems. PLOS Comput. Biol. 9(12), e1003290 (2013). doi:10.1371/journal.pcbi.1003290

  62. Morgan, T.: Experimental studies of the regeneration of planaria maculata. Dev. Genes Evol. 7(2), 364–397 (1898)

    Google Scholar 

  63. Oviedo, N.J., Morokuma, J., Walentek, P., Kema, I., Gu, M.B., Ahn, J.M., Hwang, J.S., Gojobori, T., Levin, M.: Long-range neural and gap junction protein-mediated cues control polarity during planarian regeneration. Dev. Biol. 339(1), 188–199 (2010)

    Article  Google Scholar 

  64. Oviedo, N.J., Newmark, P.A.: Sánchez Alvarado, A.: Allometric scaling and proportion regulation in the freshwater planarian schmidtea mediterranea. Dev. Dyn.226(2), 326–333 (2003)

    Google Scholar 

  65. Patil, K.R., Nielsen, J.: Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc. Natl. Acad. Sci. U.S. A. 102(8), 2685–2689 (2005). doi:10.1073/pnas.0406811102

    Article  Google Scholar 

  66. Pearson, B.: Sanchez Alvarado, A.: Regeneration, stem cells, and the evolution of tumor suppression. Cold Spring Harb. Symp. Quant. Biol. 73, 565–572 (2008). doi:10.1101/sqb.2008.73.045

    Article  Google Scholar 

  67. Pellettieri, J., Sanchez Alvarado, A.: Cell turnover and adult tissue homeostasis: From humans to planarians. Annu. Rev. Genet. 41, 83–105 (2007). doi:10.1146/annurev.genet.41.110306.130244

  68. Perkins, T.J., Jaeger, J., Reinitz, J., Glass, L.: Reverse engineering the gap gene network of drosophila melanogaster. PLOS Comput. Biol. 2(5), 417–428 (2006). doi:10.1371/journal.pcbi.0020051

  69. Petersen, C.P., Reddien, P.W.: Smed-\(\beta \)catenin-1 is required for anteroposterior blastema polarity in planarian regeneration. Science 319(5861), 327–330 (2008)

    Article  Google Scholar 

  70. Petersen, C.P., Reddien, P.W.: A wound-induced wnt expression program controls planarian regeneration polarity. Proc. Natl. Acad. Sci. U. S. A. 106(40), 17061–17066 (2009). doi:10.1073/pnas.0906823106

    Article  Google Scholar 

  71. Petersen, C.P., Reddien, P.W.: Polarized notum activation at wounds inhibits wnt function to promote planarian head regeneration. Science 332(6031), 852–855 (2011). doi:10.1126/science.1202143

    Article  Google Scholar 

  72. Ramm, A.G.: Inverse Problems. Mathematical and analytical techniques with applications to engineering. Springer, New York (2005)

    Google Scholar 

  73. Reddien, P.W., Bermange, A.L., Murfitt, K.J., Jennings, J.R., Alvarado, A.S.: Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria. Develop. Cell 8(5), 635–649 (2005). doi:10.1016/j.devcel.2005.02.014

    Article  Google Scholar 

  74. Reddien, P.W., Sanchez Alvarado, A.: Fundamentals of planarian regeneration: Annu. Rev. cell Develop. Biol.20, 725–757 (2004)

    Google Scholar 

  75. Reinitz, J., Kosman, D., Vanario-Alonso, C.E., Sharp, D.H.: Stripe forming architecture of the gap gene system. Develop. Genet. 23(1), 11–27 (1998). doi:10.1002/(Sici)1520-6408(1998)23:1<11:Aid-Dvg2>3.0.Co;2-9

  76. Reinitz, J., Mjolsness, E., Sharp, D.H.: Model for cooperative control of positional information in drosophila by bicoid and maternal hunchback. J. Exp. Zool. 271(1), 47–56 (1995). doi:10.1002/jez.1402710106

    Article  Google Scholar 

  77. Reinitz, J., Sharp, D.H.: Mechanism of eve stripe formation. Mech. Develop. 49(1–2), 133–158 (1995). doi:10.1016/0925-4773(94)00310-J

    Article  Google Scholar 

  78. Reuter, H., Mäz, M., Vogg, M., Eccles, D., Gírfol-Boldú, L., Wehner, D., Owlarn, S., Adell, T., Weidinger, G., Bartscherer, K.: \(\beta \)-catenin-dependent control of positional information along the ap body axis in planarians involves a teashirt family member. Cell Rep. 10(2), 253–265 (2015). doi:10.1016/j.celrep.2014.12.018

  79. Rink, J.C., Gurley, K.A., Elliott, S.A.: Sánchez Alvarado, A.: Planarian hh signaling regulates regeneration polarity and links hh pathway evolution to cilia. Science 326(5958), 1406–1410 (2009)

    Google Scholar 

  80. Roberts-Galbraith, R.H., Newmark, P.A.: On the organ trail: insights into organ regeneration in the planarian. Curr. Opin. Genet. Develop. 32, 37–46 (2015). doi:10.1016/j.gde.2015.01.009

    Article  Google Scholar 

  81. Saló, E., Abril, J.F., Adell, T., Cebricá, F., Eckelt, K., Fernandez-Taboada, E., Handberg-Thorsager, M., Iglesias, M., Molina, M.D.D., Rodrguez-Esteban, G.: Planarian regeneration: achievements and future directions after 20 years of research. Int. J. Develop. Biol. 53(8–10), 1317–1327 (2009)

    Google Scholar 

  82. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science 324(5923), 81–85 (2009)

    Article  Google Scholar 

  83. Schmidt, M.D., Vallabhajosyula, R.R., Jenkins, J.W., Hood, J.E., Soni, A.S., Wikswo, J.P., Lipson, H.: Automated refinement and inference of analytical models for metabolic networks. Phys. Biol. 8(5), 055011 (2011). doi:10.1088/1478-3975/8/5/055011

  84. Scimone, M., Kravarik, K., Lapan, S., Reddien, P.: Neoblast specialization in regeneration of the planarian schmidtea mediterranea. Stem Cell Rep. 3(2), 339–352 (2014). doi:10.1016/j.stemcr.2014.06.001

  85. Shomrat, T., Levin, M.: An automated training paradigm reveals long-term memory in planaria and its persistence through head regeneration. J. Exp. Biol. 216(20), 3799–3810 (2013). doi:10.1242/jeb.087809

  86. Sirbu, A., Ruskin, H., Crane, M.: Comparison of evolutionary algorithms in gene regulatory network model inference. BMC Bioinform. 11(1), 59 (2010)

    Article  Google Scholar 

  87. Soldatova, L., King, R.: An ontology of scientific experiments. J. R. Soc. Interface 3(11), 795–803 (2006)

    Article  Google Scholar 

  88. Solë, R.V., Macia, J.: Expanding the landscape of biological computation with synthetic multicellular consortia. Nat. Comput. 1–13 (2013). doi:10.1007/s11047-013-9380-y

  89. Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Simonovic, M., Roth, A., Santos, A., Tsafou, K.P., Kuhn, M., Bork, P., Jensen, L.J., von Mering, C.: String v10: protein-protein interaction networks, integrated over the tree of life. Nucl. Acids Res. 43(D1), D447–D452 (2015). doi:10.1093/nar/gku1003

    Article  Google Scholar 

  90. Tegner, J., Yeung, M.K., Hasty, J., Collins, J.J.: Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling. Proc. Natl. Acad. Sci. U. S. A. 100(10), 5944–5949 (2003). doi:10.1073/pnas.0933416100

    Article  Google Scholar 

  91. Van Oye, P.: Over het geheugen bij de platwormen en andere biologische waarnemingen bij deze dieren. Natuurwet. Tijdschr 2, 1–9 (1920)

    Google Scholar 

  92. Wagner, D.E., Wang, I.E., Reddien, P.W.: Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science 332(6031), 811–816 (2011). doi:10.1126/science.1203983

    Article  Google Scholar 

  93. Whitley, D., Rana, S., Heckendorn, R.B.: The island model genetic algorithm: on separability, population size and convergence. J. Comput. Inf. Technol. 7, 33–48 (1999)

    Google Scholar 

  94. Yeung, M.K.S., Tegnér, J., Collins, J.J.: Reverse engineering gene networks using singular value decomposition and robust regression. Proc. Natl. Acad. Sci. 99(9), 6163–6168 (2002). doi:10.1073/pnas.092576199

    Article  Google Scholar 

  95. Zhu, S.J., Hallows, S.E., Currie, K.W., Xu, C., Pearson, B.J.: A mex3 homolog is required for differentiation during planarian stem cell lineage development. eLife 4 (2015). doi:10.7554/eLife.07025

Download references

Acknowledgments

This work was supported by NSF grant EF-1124651, NIH grant GM078484, USAMRMC grant W81XWH-10-2-0058, and the Mathers Foundation. Computation used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by NSF grant ACI-1053575, and a cluster computer awarded by Silicon Mechanics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Lobo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lobo, D., Levin, M. (2017). Computing a Worm: Reverse-Engineering Planarian Regeneration. In: Adamatzky, A. (eds) Advances in Unconventional Computing. Emergence, Complexity and Computation, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-33921-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33921-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33920-7

  • Online ISBN: 978-3-319-33921-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics