Skip to main content

Coastal Sediments: Transition from Land to Sea

  • Chapter
  • First Online:
  • 2626 Accesses

Abstract

Coastal habitats differ greatly from the open sea and the ocean. The coast is a transition zone from the land to the sea and is therefore influenced by both. Coastal habitats are also very productive environments and therefore vulnerable to disturbances. The coast protects the land behind from flooding and it often keeps pace with sea-level changes. The coasts of most seas and the ocean are exposed to the tides and waves, and locally to ice cover and drifting ice. The tidal influence in some enclosed seas is less or even negligible. On the other hand, tidal influence may reach more than 100 km upstream of estuaries and rivers. The ecosystems of coastal habitats are complex and as everywhere microorganisms play a crucial role in maintaining ecosystem functions and keep the biogeochemical cycles going. There is a great variety of different coastal habitats. They may be intertidal or sublittoral. It is impossible to review all those different coastal habitats and therefore this chapter treats only three different intertidal coastal microbial ecosystems as representative cases for the microbiology of coastal sediments. Intertidal mudflats are dominated by diatoms, which are important primary producers and exude extracellular polymeric substances (EPS). These exopolymers may increase the erosion threshold of the mud and also forms the basis of the microbial food web. The second case is microbial mats that are formed by benthic cyanobacteria on sandy beaches. They are thought to be the modern representatives of the world’s earliest ecosystem, the Precambrian stromatolites. The third case is mangrove forests that are important ecosystems in tropical and subtropical regions. The mangrove trees and shrubs form the basis of productive ecosystems that provide food for a plethora of local fauna, and protect the land behind. Mangrove ecosystems export a considerable amount of carbon to the ocean. The activity of diverse microbial communities is responsible for maintaining the major ecosystem functions and the cycling of the major element.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alongi DM (2014) Carbon cycling and storage in mangrove forests. Ann Rev Mar Sci 6:195–219

    Article  PubMed  Google Scholar 

  • Alongi DM, Sasekumar A, Tirendi F, Dixon P (1998) The influence of stand age on benthic decomposition and recycling of organic matter in managed mangrove forests of Malaysia. J Exp Mar Biol Ecol 225:197–218

    Article  Google Scholar 

  • Alongi DM, Pfitzner J, Trott LA, Tirendi F, Dixon P, Klumpp DW (2005) Rapid sediment accumulation and microbial mineralization in forests of the mangrove Kandelia candel in the Jiulongjiang estuary, China. Estuar Coast Shelf Sci 63:605–618

    Article  CAS  Google Scholar 

  • Al-Raei AM, Bosselmann K, Böttcher ME, Hespenheide B, Tauber F (2009) Seasonal dynamics of microbial sulfate reduction in temperate intertidal surface sediments: controls by temperature and organic matter. Ocean Dyn 59:351–370

    Article  Google Scholar 

  • Alvarenga DO, Rigonato J, Branco LHZ, Fiore MF (2015) Cyanobacteria in mangrove ecosystems. Biodivers Conserv 24:799–817

    Article  Google Scholar 

  • Andreote FD, Jiménez DJ, Chaves D, Dias ACF, Luvizotto DM, Dini-Andreote F, Fasanella CC, Lopez MV, Baena S, Taketani RG, de Melo IS (2012) The microbiome of Brazilian mangrove sediments as revealed by metagenomics. PLoS ONE 7(6):e38600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benyoucef I, Blandin E, Lerouxel A, Jesus B, Rosa P, Méléder V, Launeau P, Barillé L (2014) Microphytobenthos interannual variations in a north-European estuary (Loire estuary, France) detected by visible-infrared multispectral remote sensing. Estuar Coast Shelf Sci 136:43–52

    Article  Google Scholar 

  • Bhattacharyya A, Majumder NS, Basak P, Mukherji S, Roy D, Nag S, Haldar A, Chattopadhyay D, Mitra S, Bhattacharyya M, Ghosh A (2015) Diversity and distribution of Archaea in the mangrove sediment of Sundarbans. Archaea 2015(968582):1–14

    Article  Google Scholar 

  • Bolhuis H, Stal LJ (2011) Analysis of bacterial and archaeal diversity in coastal microbial mats using massive parallel 16S rRNA gene tag sequencing. ISME J 5:1701–1712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolhuis H, Severin I, Confurius-Guns V, Wollenzien UIA, Stal LJ (2010) Horizontal transfer of the nitrogen fixation gene cluster in the cyanobacterium Microcoleus chthonoplastes. ISME J 4:121–130

    Article  CAS  PubMed  Google Scholar 

  • Bolhuis H, Fillinger L, Stal LJ (2013) Coastal microbial mat diversity along a natural salinity gradient. PLoS ONE 8(5):e63166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolhuis H, Cretoiu MS, Stal LJ (2014) Molecular ecology of microbial mats. FEMS Microbiol Ecol 90:335–350

    CAS  PubMed  Google Scholar 

  • Bouillon S, Raman AV, Dauby P, Dehairs F (2002) Carbon and nitrogen stable isotope ratios of subtidal benthic invertebrates in an estuarine mangrove ecosystem (Andhra Pradesh, India). Estuar Coast Shelf Sci 54:901–913

    Article  CAS  Google Scholar 

  • Bruckner CG, Rehm C, Grossart H-P, Kroth PG (2011) Growth and release of extracellular organic compounds by benthic diatoms depend on interactions with bacteria. Environ Microbiol 13:1052–1063

    Article  CAS  PubMed  Google Scholar 

  • Canfield DE, Kristensen E, Thamdrup B (2005) The methane cycle. In: Aquatic geomicrobiology. Advances in marine biology, vol 48, pp 383–418

    Google Scholar 

  • Cockell CS (2006) The origin and emergence of life under impact bombardment. Philos Trans R Soc Lond B 361:1845–1856

    Article  CAS  Google Scholar 

  • de Boer PL, van Gelder A, Nio SD (1988) Tide-influenced sedimentary environments and facies. D. Reidel Publishing Company, Dordrecht, p 529

    Google Scholar 

  • De Brouwer JFC, Wolfstein K, Stal LJ (2002) Physical characterization and diel dynamics of different fractions of extracellular polysaccharides in an axenic culture of a benthic diatom. Eur J Phycol 37:37–44

    Article  Google Scholar 

  • Dias ACF, Dini-Andreote F, Taketani RG, Tsai SM, Azevedo JL, de Melo IS, Andreote FD (2011) Archaeal communities in the sediments of three contrasting mangroves. J Soils Sedim 11:1466–1476

    Article  Google Scholar 

  • Dionne JC (1988) Characteristic features of modern tidal flats in cold regions. In: de Boer PL, van Gelder A, Nio SD (eds) Tide-influenced sedimentary environments and facies. D. Reidel Publishing Company, Dordrecht, pp 301–332

    Chapter  Google Scholar 

  • Dupuy C, Mallet C, Guizien K, Montanié H, Bréret M, Mornet F, Fontaine C, Nérot C, Orvain F (2014) Sequential resuspension of biofilm components (viruses, prokaryotes and protists) as measured by erodimetry experiments in the Brouage mudflat (French Atlantic coast). J Sea Res 92:56–65

    Article  Google Scholar 

  • Dye AH, Lasiak TA (1986) Microbenthos, meiobenthos and fiddler crabs: trophic interactions in a tropical mangrove sediment. Mar Ecol Prog Ser 32:259–264

    Article  Google Scholar 

  • Dyer KR, Christie MC, Wright EW, Shi Z (2000) The classification of intertidal mudflats. Cont Shelf Res 20:1039–1060

    Article  Google Scholar 

  • Fan H, Bolhuis H, Stal LJ (2015a) Denitrification and the denitrifier community in coastal microbial mats. FEMS Microbiol Ecol 91:fiu033

    Google Scholar 

  • Fan H, Bolhuis H, Stal LJ (2015b) Nitrification and nitrifying bacteria in a coastal microbial mat. Front Microbiol 6:1367

    PubMed  PubMed Central  Google Scholar 

  • Gomez-Garcia MR, Fazeli F, Grote A, Grossman AR, Bhaya D (2013) Role of polyphosphate in thermophilic Synechococcus sp. from microbial mats. J Bacteriol 195:3309–3319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guizien K, Dupuy C, Ory P, Montanié H, Hartmann H, Chatelain M, Karpytchev M (2014) Microorganism dynamics during a rising tide: disentangling effects of resuspension and mixing with offshore waters above an intertidal mudflat. J Mar Syst 129:178–188

    Article  Google Scholar 

  • Gutierrez T, Biller DV, Shimmield T, Green DH (2012) Metal binding properties of the EPS produced by Halomonas sp. TG39 and its potential in enhancing trace element bioavailability to eukaryotic phytoplankton. Biometals 25:1185–1194

    Article  CAS  PubMed  Google Scholar 

  • Gypens N, Borges AV, Speeckaert G, Lancelot C (2014) The dimethylsulfide cycle in the eutrophied southern North Sea: a model study integrating phytoplankton and bacterial processes. PLoS ONE 9(1):e85862

    Article  PubMed  PubMed Central  Google Scholar 

  • Haynes K, Hofmann TA, Smith CJ, Ball AS, Underwood GJC, Osborn AM (2007) Diatom-derived carbohydrates as factors affecting bacterial community composition in estuarine sediments. Appl Environ Microbiol 73:6112–6124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heip CHR, Goosen NK, Herman PMJ, Kromkamp J, Middelburg JJ, Soetaert K (1995) Production and consumption of biological particles in temperate tidal estuaries. Oceanogr Mar Biol Annu Rev 33:1–149

    Google Scholar 

  • Hofmann T, Hanlon ARM, Taylor JD, Ball AS, Osborn AM, Underwood GJC (2009) Dynamics and compositional changes in extracellular carbohydrates in estuarine sediments during degradation. Mar Ecol Prog Ser 379:45–58

    Article  CAS  Google Scholar 

  • Holguin G, Vazquez P, Bashan Y (2001) The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biol Fertil Soils 33:265–278

    Article  CAS  Google Scholar 

  • Holmer M, Kristensen E, Banta G, Hansen K, Jensen MH, Bussawarit N (1994) Biogeochemical cycling of sulfur and iron in sediments of a south-east Asian mangrove, Phuket Island, Thailand. Biogeochemistry 26:145–161

    Article  CAS  Google Scholar 

  • Hong K, Gao A-H, Xie Q-Y, Gao H, Zhuang L, Lin H-P, Yu H-P, Li J, Yao X-S, Goodfellow M, Ruan J-S (2009) Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. Mar Drugs 7:24–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh H-L, Chen C-P, Chen Y-G, Yang H-H (2002) Diversity of benthic organic matter flows through polychaetes and crabs in a mangrove estuary: δ13C and δ34S signals. Mar Ecol Prog Ser 227:145–155

    Article  Google Scholar 

  • Isaksen MF, Finster K (1996) Sulphate reduction in the root zone of the seagrass Zostera noltii on the intertidal flats of a coastal lagoon (Arcachon, France). Mar Ecol Prog Ser 137:187–194

    Article  CAS  Google Scholar 

  • Jensen MM, Thamdrup B, Rysgaard S, Holmer M, Fossing H (2003) Rates and regulation of microbial iron reduction in sediments of the Baltic-North Sea transition. Biogeochemistry 65:295–317

    Article  Google Scholar 

  • Kamp A, Høgslund S, Risgaard-Petersen N, Stief P (2015) Nitrate storage and dissimilatory nitrate reduction by eukaryotic microbes. Front Microbiol 6:1492

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaplan A, Schwarz R, Liemanhurwitz J, Reinhold L (1991) Physiological and molecular aspects of the inorganic carbon-concentrating mechanism in cyanobacteria. Plant Physiol 97:851–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazmierczak J, Kempe S (2004) Microbialite formation in seawater of increased alkalinity, Satonda Crater Lake, Indonesia—discussion. J Sedim Res 74:314–317

    Article  CAS  Google Scholar 

  • Kieckbusch DK, Koch MS, Serafy JE, Anderson WT (2004) Trophic linkages among primary producers and consumers in fringing mangroves of subtropical lagoons. Bull Mar Sci 74:271–285

    Google Scholar 

  • Klap VA, Hemminga MA, Boon JJ (2000) Retention of lignin in seagrasses: angiosperms that returned to the sea. Mar Ecol Prog Ser 194:1–11

    Article  CAS  Google Scholar 

  • Kremer B, Kazmierczak J, Stal LJ (2008) Calcium carbonate precipitation in cyanobacterial mats from sandy tidal flats of the North Sea. Geobiology 6:46–56

    CAS  PubMed  Google Scholar 

  • Kristensen E, Bouillon S, Dittmar T, Marchand C (2008) Organic carbon dynamics in mangrove ecosystems: a review. Aquat Bot 89:201–219

    Article  CAS  Google Scholar 

  • Leloup J, Petit F, Boust D, Deloffre J, Bally G, Clarisse O, Quillet L (2005) Dynamics of sulfate-reducing microorganisms (dsrAB genes) in two contrasting mudflats of the Seine estuary (France). Microb Ecol 50:307–314

    Article  CAS  PubMed  Google Scholar 

  • Ley RE, Harris JK, Wilcox J, Spear JR, Miller SR, Bebout BM, Maresca JA, Bryant DA, Sogin ML, Pace NR (2006) Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol 72:3685–3695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Z, Qiu Z, Wei Q, Laing GD, Zhao Y, Yan C (2014) Dynamics of ammonia-oxidizing archaea and bacteria in relation to nitrification along simulated dissolved oxygen gradient in sediment–water interface of the Jiulong river estuarine wetland, China. Environ Earth Sci 72:2225–2237

    Article  CAS  Google Scholar 

  • Marchand C, Disnar JR, Lallier-Vergès E, Lottier N (2005) Early diagenesis of carbohydrates and lignin in mangrove sediments subject to variable redox conditions (French Guiana). Geochim Cosmochim Acta 69:131–142

    Article  CAS  Google Scholar 

  • McKew BA, Dumbrell AJ, Taylor JD, McGenity TJ, Underwood GJC (2013) Differences between aerobic and anaerobic degradation of microphytobenthic biofilm-derived organic matter within intertidal sediments. FEMS Microbiol Ecol 84:495–509

    Article  CAS  PubMed  Google Scholar 

  • Middelburg JJ, Klaver G, Nieuwenhuize J, Wielemaker A, de Haas W, Vlug T, van der Nat FJWA (1996) Organic matter mineralization in intertidal sediments along an estuarine gradient. Mar Ecol Prog Ser 132:157–168

    Article  CAS  Google Scholar 

  • Miyatake T, MacGregor BJ, Boschker HTS (2013) Depth-related differences in organic substrate utilization by major microbial groups in intertidal marine sediment. Appl Environ Microbiol 79:389–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montanié H, Ory P, Orvain F, Delmas D, Dupuy C, Hartmann HJ (2014) Microbial interactions in marine water amended by eroded benthic biofilm: a case study from an intertidal mudflat. J Sea Res 92:74–85

    Article  Google Scholar 

  • Nielsen OI, Kristensen E, Holmer M (2003) Impact of Arenicola marina (Polychaeta) on sediment sulfur dynamics. Aquat Microb Ecol 33:95–105

    Article  Google Scholar 

  • Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  CAS  PubMed  Google Scholar 

  • Reid RP, Visscher PT, Decho AW, Stolz JF, Bebout BM, Dupraz C, Macintyre IG, Paerl HW, Pinckney JL, Prufert-Bebout L, Steppe TF, DesMarais DJ (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406:989–992

    Article  CAS  PubMed  Google Scholar 

  • Rigonato J, Alvarenga DO, Andreote FD, Dias ACF, Melo IS, Kent A, Fiore MF (2012) Cyanobacterial diversity in the phyllosphere of a mangrove forest. FEMS Microbiol Ecol 80:312–322

    Article  CAS  PubMed  Google Scholar 

  • Rigonato J, Kent AD, Alvarenga DO, Andreote FD, Beirigo RM, Vidal-Torrado P, Fiore MF (2013) Drivers of cyanobacterial diversity and community composition in mangrove soils in south-east Brazil. Environ Microbiol 15:1103–1114

    Article  CAS  PubMed  Google Scholar 

  • Schopf JW (2006) Fossil evidence of Archaean life. Philos Trans R Soc Lond B 361:869–885

    Article  CAS  Google Scholar 

  • Schrijvers J, Camargo MG, Pratiwi R, Vincx M (1998) The infaunal macrobenthos under East African Ceriops tagal mangroves impacted by epibenthos. J Exp Mar Biol Ecol 222:175–193

    Article  Google Scholar 

  • Severin I, Stal LJ (2008) Light dependency of nitrogen fixation in a coastal cyanobacterial mat. ISME J 2:1077–1088

    Article  CAS  PubMed  Google Scholar 

  • Severin I, Stal LJ (2010a) Temporal and spatial variability of nifH expression in three filamentous Cyanobacteria in coastal microbial mats. Aquat Microb Ecol 60:59–70

    Article  Google Scholar 

  • Severin I, Stal LJ (2010b) Diazotrophic microbial mats. In: Seckbach J, Oren A (eds) Microbial mats. Modern and ancient microorganisms in stratified systems, vol 14. Springer Sciences, Heidelberg, pp 321–339

    Google Scholar 

  • Severin I, Acinas SG, Stal LJ (2010) Diversity of nitrogen-fixing bacteria in cyanobacterial mats. FEMS Microbiol Ecol 73:514–525

    CAS  PubMed  Google Scholar 

  • Severin I, Confurius-Guns V, Stal LJ (2012) Effect of salinity on nitrogenase activity and composition of the active diazotrophic community in intertidal microbial mats. Arch Microbiol 194:483–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanmugam M, Mody KH (2000) Heparinoid-active sulphated polysaccharides from marine algae as potential blood anticoagulant. Curr Sci 79:1672–1683

    CAS  Google Scholar 

  • Shearer CA, Descals E, Kohlmeyer B, Kohlmeyer J, Marnanová L, Padgett D, Porter D, Raja HA, Schmit JP, Thorton HA, Voglymayr H (2007) Fungal biodiversity in aquatic habitats. Biodivers Conserv 16:49–67

    Article  Google Scholar 

  • Shi Z, Chen JY (1996) Morphodynamics and sediment dynamics on intertidal mudflats in China (1961–1994). Cont Shelf Res 16:1909–1926

    Article  Google Scholar 

  • Staats N, Stal LJ, de Winder B, Mur LR (2000) Oxygenic photosynthesis as driving process in exopolysaccharide production of benthic diatoms. Mar Ecol Prog Ser 193:261–269

    Article  CAS  Google Scholar 

  • Stal LJ (2001) Coastal microbial mats: the physiology of a small-scale ecosystem. S Afr J Bot 67:399–410

    Article  CAS  Google Scholar 

  • Stal LJ (2003) Nitrogen cycling in marine cyanobacterial mats. In: Krumbein WE, Paterson DM, Zavarzin GA (eds) Fossil and recent biofilms, a natural history of life on earth. Kluwer Academic Publishers, Dordrecht, pp 119–140

    Chapter  Google Scholar 

  • Stal LJ (2007) Cyanobacteria: diversity and versatility, clues to life in extreme environments. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 659–680

    Chapter  Google Scholar 

  • Stal LJ (2010) Microphytobenthos as a biogeomorphological force in intertidal sediment stabilization. Ecol Eng 36:236–245

    Article  Google Scholar 

  • Stal LJ (2012) Microbial mats and stromatolites. In: Whitton BA (ed) The ecology of cyanobacteria II. Springer, Dordrecht, pp 65–125

    Chapter  Google Scholar 

  • Stal LJ, van Gemerden H, Krumbein WE (1985) Structure and development of a benthic marine microbial mat. FEMS Microbiol Ecol 31:111–125

    Article  CAS  Google Scholar 

  • Stefels J (2000) Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. J Sea Res 43:183–197

    Article  CAS  Google Scholar 

  • Stief P, Kamp A, de Beer D (2014) Role of diatoms in the spatial-temporal distribution of intracellular nitrate in intertidal sediment. PLoS ONE 8(9):e73257

    Article  Google Scholar 

  • Tambadou F, Lanneluc I, Sablé S, Klein GL, Doghri I, Sopéna V, Didelot S, Barthélémy C, Thiéry V, Chevrot R (2014) Novel nonribosomal peptide synthetase (NRPS) genes sequenced from intertidal mudflat bacteria. FEMS Microbiol Lett 357:123–130

    CAS  PubMed  Google Scholar 

  • Taylor JD, McKew BA, Kuhl A, McGenity TJ, Underwood GJC (2013) Microphytobenthic extracellular polymeric substances (EPS) in intertidal sediments fuel both generalist and specialist EPS-degrading bacteria. Limniol Oceanogr 58:1463–1480

    CAS  Google Scholar 

  • Thatoi H, Behera BC, Mishra RR, Dutta SK (2013) Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: a review. Ann Microbiol 63:1–19

    Article  CAS  Google Scholar 

  • Tourney J, Ngwenya BT (2014) The role of bacterial extracellular polymeric substances in geomicrobiology. Chem Geol 386:115–132

    Article  CAS  Google Scholar 

  • Villbrandt M, Stal LJ, Krumbein WE (1990) Interactions between nitrogen fixation and oxygenic photosynthesis in a marine cyanobacterial mat. FEMS Microbiol Ecol 74:59–72

    Article  CAS  Google Scholar 

  • Watermann F, Hillebrand H, Gerdes G, Krumbein WE, Sommer U (1999) Competition between benthic cyanobacteria and diatoms as influenced by different grain sizes and temperatures. Mar Ecol Prog Ser 187:77–87

    Article  Google Scholar 

  • Welsh DT, Bourguès S, de Wit R, Herbert RA (1996) Sulphate reduction in the root zone of the seagrass Zostera noltii on the intertidal flats of a coastal lagoon (Arcachon, France). Mar Biol 125:619–628

    Article  CAS  Google Scholar 

  • Westbroek P, Buddemeier B, Coleman M, Kok DJ, Fautin D, Stal LJ (1994) Strategies for the study of climate forcing by calcification. In: Doumenge F (ed) Past and present biomineralization processes. Musee Oceanographique, Monaco, pp 37–60

    Google Scholar 

  • Wooller M, Smallwood B, Jacobson M, Fogel M (2003) Carbon and nitrogen stable isotopic variation in Laguncularia racemosa (L.) (white mangrove) from Florida and Belize: implications for trophic level studies. Hydrobiologia 499:13–23

    Article  CAS  Google Scholar 

  • Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539–554

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement no 311975. This publication reflects the views only of the author, and the European Union cannot be held responsible for any use which may be made of the information contained therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas J. Stal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stal, L.J. (2016). Coastal Sediments: Transition from Land to Sea. In: Stal, L., Cretoiu, M. (eds) The Marine Microbiome. Springer, Cham. https://doi.org/10.1007/978-3-319-33000-6_10

Download citation

Publish with us

Policies and ethics