Skip to main content

Robot Surveillance and Security

  • Chapter
  • First Online:
Springer Handbook of Robotics

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter introduces the foundation for surveillance and security robots for multiple military and civilian applications. The key environmental domains are mobile robots for ground, aerial, surface water, and underwater applications. Surveillance literally means to watch from above, while surveillance robots are used to monitor the behavior, activities, and other changing information that are gathered for the general purpose of managing, directing, or protecting one’s assets or position. In a practical sense, the term surveillance is taken to mean the act of observation from a distance, and security robots are commonly used to protect and safeguard a location, some valuable assets, or personal against danger, damage, loss, and crime. Surveillance is a proactive operation, while security robots are a defensive operation. The construction of each type of robot is similar in nature with a mobility component, sensor payload, communication system, and an operator control station.

After introducing the major robot components, this chapter focuses on the various applications. More specifically, Sect. 61.3 discusses the enabling technologies of mobile robot navigation, various payload sensors used for surveillance or security applications, target detection and tracking algorithms, and the operator’s robot control console for human–machine interface (GlossaryTerm

HMI

). Section 61.4 presents selected research activities relevant to surveillance and security, including automatic data processing of the payload sensors, automatic monitoring of human activities, facial recognition, and collaborative automatic target recognition (GlossaryTerm

ATR

). Finally, Sect. 61.5 discusses future directions in robot surveillance and security, giving some conclusions and followed by references.

figure a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

two-dimensional

3-D:

three-dimensional

AI:

artificial intelligence

AR:

autoregressive

ATR:

automatic target recognition

AUV:

autonomous underwater vehicle

CC&D:

camouflage, concealment, and deception

CMU:

Carnegie Mellon University

COMINT:

communication intelligence

DCT:

discrete cosine transform

EO:

electrooptical

ESM:

electric support measure

FIRRE:

family of integrated rapid response equipment

FLIR:

forward looking infrared

FOPEN:

foliage penetration

GCS:

ground control station

GIS:

geographic information system

GMTI:

ground moving target indicator

GPS:

global positioning system

HMI:

human–machine interface

HRR:

high resolution radar

IFSAR:

interferometric SAR

IIR:

infinite impulse response

IR:

infrared

ISAR:

inverse SAR

ISR:

intelligence, surveillance and reconnaissance

KAIST:

Korea Advanced Institute of Science and Technology

L/D:

lift-to-drag

LAGR:

learning applied to ground robots

LIDAR:

light detection and ranging

LOS:

line-of-sight

MAP:

maximum a posteriori

MASINT:

measurement and signatures intelligence

MDARS:

mobile detection assessment and response system

MRHA:

multiple resource host architecture

MTI:

moving target indicator

OTH:

over-the-horizon

PerceptOR:

perception for off-road robotics

RF:

radio frequency

RHIB:

rigid hull inflatable boat

RSTA:

reconnaissance, surveillance, and target acquisition

SAR:

synthetic aperture radar

SBSS:

space based space surveillance

space based space surveillance

SIGINT:

signal intelligence

SNR:

signal-to-noise ratio

SPAWAR:

Space and Naval Warfare Systems Center

UAV:

fielded unmanned aerial vehicle

UGV:

unmanned ground vehicle

UHF:

ultrahigh frequency

USV:

unmanned surface vehicle

UUV:

unmanned underwater vehicle

VHF:

very high frequency

References

  1. B. Shoop: Product manager force protection systems: Equipment that protects and secures, Chem-Bio Def. Quart. 4(2), 8–11 (2007)

    Google Scholar 

  2. I. Pavlidis, V. Morellas, P. Tsiamyrtzis, S. Harp: Urban surveillance systems: From the laboratory to the commercial world, Proceedings IEEE 89(10), 1478–1497 (2001)

    Article  Google Scholar 

  3. H.R. Everett, D.W. Gage: From laboratory to warehouse: Security robots meet the real world, Int. J. Robotics Res. 18(7), 760–768 (1999)

    Article  Google Scholar 

  4. A. Birk, H. Kenn: RoboGuard, a teleoperated mobile security robot, Control Eng. Pract. 10(11), 1259–1264 (2002)

    Article  Google Scholar 

  5. M. Saptharishi, K.S. Bhat, C.P. Diehl, J.M. Dolan, P.K. Khosla: CyberScout: Distributed agents for autonomous reconnaissance and surveillance, Mechatron. Mach. Vis. 93, 100 (2000)

    Google Scholar 

  6. T.A. Heath-Pastore, H.R. Everett, K. Bonner: Mobile robots for outdoor security applications, Am. Nucl. Soc. 8th Int. Top. Meet. Robotics Remote Syst., Pittsburgh (1999) pp. 25–29

    Google Scholar 

  7. H.R. Everett, G. Gilbreath, T.A. Heath-Pastore, R.T. Laird: Controlling multiple security robots in a warehouse environment, AIAA-NASA Conf. Intell. Robots, Houston (1994)

    Google Scholar 

  8. E. Kuiper, S. Nadjm-Tehrani: Mobility models for UAV group reconnaissance applications, Int. Conf. Wirel. Mob. Commun. (ICWMC) Bucharest, Romania (2006)

    Google Scholar 

  9. B. Fletcher: New roles for UUVs intelligence, surveillance, and reconnaissance, 9th Pac. Congr. Mar. Sci. Technol., Honolulu (2000)

    Google Scholar 

  10. A. Zelinsky, R.A. Jarvis, J.C. Byrne, S. Yuta: Planning paths of complete coverage of an unstructured environment by a mobile robot, Proc. 8th Int. Conf. Adv. Robotics (ICAR), Tsukuba (1993)

    Google Scholar 

  11. D. Stein, J. Schoonmaker, E. Coolbaugh: Hyperspectral Imaging for Intelligence, Surveillance, and Reconnaissance (Space and Naval Warfare Systems Center, San Diego 2001), Biennial Review

    Google Scholar 

  12. D. W. Gage, W. D. Bryan, H. G. Nguyen: Internetting tactical security sensor systems, Proceedings SPIE 3393 (1998) doi:10.1117/12.317683

    Google Scholar 

  13. V. Morellas, I. Pavlidis, P. Tsiamyrtzis: DETER: Detection of events for threat evaluation and recognition, Mach. Vis. Appl. 15, 29–45 (2003)

    Article  Google Scholar 

  14. W. Severson, R. Rimey: Reconnaissance, surveillance, and target acquisition in the UGV/Demo II program, Proc. 4th ATR Syst. Technol. Symp., Vol. I – Unclassif. (1994) pp. 129–142

    Google Scholar 

  15. D. Hougen, R. Rimey, W. Severson: Description of the RSTA subsystem. In: Reconnaissance, Surveillance, and Target Acquisition for the Unmanned Ground Vehicle: Providing Surveillance `Eyes' for an Autonomous Vehicle, ed. by O. Firschein, T.M. Strat (Morgan Kaufman, New York 1997)

    Google Scholar 

  16. P.Y. Oh, W.E. Green: CQAR: Closed quarter aerial design for reconnaissance, surveillance and target acquisition tasks in urban areas, Int. J. Comput. Intell. 1(4), 353–360 (2004)

    Google Scholar 

  17. B. Bhanu: Evaluation of automatic target recognition algorithms, Proceedings SPIE 0435 (1983) doi:10.1117/12.936960

    Google Scholar 

  18. C. Olson, D. Huttenlocher: Automatic target recognition by matching oriented edge pixels, IEEE Trans. Image Proc. 6(1), 103–113 (1997)

    Article  Google Scholar 

  19. A. Vasile, R. Marino: Pose-independent automatic target detection and recognition using 3-D ladar data, Proceedings SPIE 5426 (2004) doi:10.1117/12.54676

    Google Scholar 

  20. H. Andreasson, M. Magnusson, A. Lilienthal: Has something changed here? autonomous difference detection for security patrol robots, Proc. IEEE/RSI Int. Conf. Intell. Robots Syst. (IROS), San Diego (2007) pp. 3429–3435

    Google Scholar 

  21. A. Muccio, T.B. Scruggs: Moving target indicator (MTI) applications for unmanned aerial vehicles (UAVs), Proc. Int. Conf. Radar (RADAR), Adelaide (2003)

    Google Scholar 

  22. E. Ribnick, N. Papanikolopoulos: Estimating 3D trajectories of periodic motions from stationary monocular views, Proc. Eur. Conf. Comput. Vis. (ECCV) (2008)

    Google Scholar 

  23. C. Nehme, J. Crandall, M. Cummings: An operator function taxonomy for unmanned aerial vehicle missions, Proc. 12th Int. Command Control Res. Technol. Symp. (2007)

    Google Scholar 

  24. T.E. Noell, F.W. DePiero: Reduced bandwidth video for remote vehicle operations, Proc. Assoc. Unmanned Veh. Syst. (AUVS) (Association for Unmanned Vehicle Systems, Washington 1993)

    Google Scholar 

  25. T. Fong, C. Thorpe, C. Baur: Collaboration, dialogue, and human–robot interaction, 10th Int. Symp. Robotics Res., Lorne, Victoria (2001)

    Google Scholar 

  26. Carroll, D., Nguyen,. C., Everett, H.R., and B. Frederick: Development and testing for physical security robots, SPIE Proceedings 5804 (2005) doi:10.1117/12.606235

    Google Scholar 

  27. B. Shoop, M. Johnston, R. Goehring, J. Moneyhun, B. Skibba: Mobile detection assessment and response systems (MDARS): A force protection, physical security operational success, Proceedings SPIE 6230 (2006) doi:10.117/12.665939

    Google Scholar 

  28. H.R. Everett, R.T. Laird, D.M. Carroll, G. Gilbreath, T.A. Heath-Pastore, R.S. Inderieden, T. Tran, K. Grant, D.M. Jaffee: Multiple Resource Host Architecture (MRHA) for the Mobile Detection Assessment Response System (MDARS) (Space and Naval Warfare Systems Center, San Diego 2000), Technical Document 3026, Revision A

    Book  Google Scholar 

  29. Y. Takahashi, I. Masuda: A visual interface for security robots, Proc. IEEE Int. Workshop Robot Human Commun., Tokyo (1992)

    Google Scholar 

  30. R. Maini, H. Aggarwal: A comprehensive view of image enhancement techniques, J. Comput. 2(3), 8–13 (2010)

    Google Scholar 

  31. H. Warston, H. Persson: Ground surveillance and fusion of ground target sensor data in a networked based defense, Proc. 7th Int. Conf. Inf. Fusion, Stock. (2004) pp. 1195–1201

    Google Scholar 

  32. J. Loyall, J. Ye, S. Neema, N. Mahadevan: Model-based design of end-to-end quality of service in a multi-UAV surveillance and target tracking application, 2nd RTAS Workshop Model. Embed. Syst. (MoDES), Toronto (2004)

    Google Scholar 

  33. A.J. Joshi, F. Porikli, N. Papanikolopoulos: Breaking the interactive bottleneck in multi-class classification with active selection and binary feedback, IEEE Conf. Comput. Vis. Pattern Recogn. (2010)

    Google Scholar 

  34. S. Balakirsky: Semi-autonomous mobile target engagement system, Proc. Assoc. Unmanned Veh. Syst. (AUVS) (1993) pp. 927–946

    Google Scholar 

  35. P. Turaga, R. Chellappa, V. Subrahmanian, O. Udrea: Machine recognition of human activities: A survey, IEEE Trans. Circuits Syst. Video Technol. 18(11), 1473–1488 (2008)

    Article  Google Scholar 

  36. A. Shee, W.-Y. Chung: High accuracy human activity monitoring using neural network, IEEE 3rd Int. Conf. Converg. Hybrid Inf. Technol., Busan, South Korea (2008)

    Google Scholar 

  37. J. Aggarwal, M. Ryoo: Human activity analysis: A review, ACM Comput. Surv. 43(3), 16 (2011)

    Article  Google Scholar 

  38. A. Fernadez-Caballero, J. Castillo, J. Rodriguez-Sanchez: Human activity monitoring by local and global finite state machine, Expert Syst. Appl. 39, 6982–6993 (2012)

    Article  Google Scholar 

  39. N. Bird, O. Masoud, N. Papanikolopoulos, A. Isaacs: Detection of loitering individuals in public transportation areas, IEEE Trans. Intell. Transp. Syst. 6(2), 167–177 (2005)

    Article  Google Scholar 

  40. S. Saxena, F. Bremond, M. Thonnat, R. Ma: Crowd behavior recognition for video surveillance, Lect. Notes Comput. Sci. 5259, 970–981 (2008)

    Article  Google Scholar 

  41. Z. Zhou, X. Chen, Y.-C. Chung, Z. He, T. Han, J. Keller: Activity analysis, summarization, and visualization for indoor human activity monitoring, IEEE Trans. Circuits Syst. Video Technol. 18(11), 1489–1498 (2008)

    Article  Google Scholar 

  42. E. Ribnick, S. Atev, O. Masoud, N. Papanikolopoulos, R. Voyles: Real-time detection of camera tampering, IEEE Int. Conf. Adv. Video Signal Based Surveill. (AVSS), Sydney, Aust. (2006)

    Google Scholar 

  43. L. Fiore, D. Fehr, R. Bodor, A. Drenner, G. Somasundaram, N. Papanikolopoulos: Multi-camera human activity monitoring, J. Intell. Robotic Syst. 52(1), 5–43 (2008)

    Article  Google Scholar 

  44. E. Ribnick, S. Atev, O. Masoud, N. Papanikolopoulos, R. Voyles: Detection of thrown objects in indoor and outdoor scenes, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2007)

    Google Scholar 

  45. N. Bird, S. Atev, N. Caramelli, R. Martin, O. Masoud, N. Papanikolopoulos: Real time, online detection of abandoned objects in public areas, IEEE Int. Conf. Robotics Autom. (ICRA) (2006) pp. 3775–3780

    Google Scholar 

  46. P. Kilambi, E. Ribnick, A. Joshi, O. Masoud, N. Papanikolopoulos: Estimating pedestrian counts in groups, Computer Vis.Image Underst. (CVIU) (2008)

    Google Scholar 

  47. D. Fehr, R. Sivalingam, V. Morellas, N. Papanikolopoulos, O. Lotfallah, Y. Park: Counting people in groups, Proc. 6th IEEE Int. Conf. Adv. Video Signal Based Surveill. (AVSS) (2009) pp. 152–157

    Google Scholar 

  48. G. Somasundaram, V. Morellas, N. Papanikolopoulos, L. Austin: Counting pedestrians and bicycles in traffic scenes, Proc. 2009 IEEE Conf. Intell. Transp. Syst. Conf., St. Louis (2009)

    Google Scholar 

  49. J.N.K. Liu, M. Wang, B. Feng: Ibotguard: An internet-based intelligent robot security system using invariant face recognition against intruder, IEEE Trans. Syst. Man Cybern C 35(1), 97–105 (2005)

    Article  Google Scholar 

  50. W. Zhao, R. Chellappa, A. Rosenfeld: Face recognition: A literature survey, ACM Comput. Surv. 35(4), 399–458 (2003)

    Article  Google Scholar 

  51. R. Gross, J. Shi, J. Cohn: Quo vadis Face Recognition? CMU-RI-TR-01-17 Report (Carnegie Mellon University, Pittsburgh 2001)

    Google Scholar 

  52. P. Viola, M. Jones: Robust real-time face detection, Int. J. Comput. Vis. 57(2), 137–154 (2004)

    Article  Google Scholar 

  53. J. Sauter, R. Mathews, A. Yinger, J. Robinson, J. Moody, S. Riddle: Distributed pheromone-based swarming control of unmanned air and ground vehicles for RSTA, Proceedings SPIE (2008) doi:10.1117/12.782271

    Google Scholar 

  54. Y. Guo, L.E. Parker, R. Madhavan: Towards collaborative robots for infrastructure security applications. In: Mobile Robots: The Evolutionary Approach, Book Series on Intelligent Systems Engineering Series, ed. by N. Nedjah, L. dos Santos Coelho, L. de Macedo Mourelle (Springer-Verlag, Berlin 2006) pp. 185–200

    Google Scholar 

  55. J. Feddema, C. Lewis, P. Klarer: Control of multiple robotic sentry vehicles, Proc. SPIE Unmanned Ground Veh. Technol. 3693, 212–223 (1999)

    Article  Google Scholar 

  56. F. Shaw, E. Klavins: Distributed estimation and control for stochastically interacting robots, 47th IEEE Decis. Control Conf., Cancun (2008)

    Google Scholar 

  57. S. Roumeliotis, G. Bekey: Distributed multirobot localization, IEEE Trans. Robotics Autom. 18(5), 781–795 (2002)

    Article  Google Scholar 

  58. Y. Sun, J. Xiao, X. Li, F. Cabrera-Mora: Adaptive source localization by a mobile robot using signal power gradient in sensor networks, IEEE Glob. Commun. Conf., New Orleans (2008)

    Google Scholar 

  59. X. Zhou, S. Roumeliotis: Robot-to-Robot relative pose estimation from range measurements, IEEE Trans. Robotics 24(6), 1379–1393 (2008)

    Article  Google Scholar 

  60. D. Carroll, H.R. Everett, G. Gilbreath, K. Mullens: Extending mobile security robots to force protection missions, Proc. Progr. Robotics FIRA RoboWorld Congr. (2009)

    Google Scholar 

  61. N. Hopper: Security and complexity aspects of human interactive proofs, 1st Workshop Human Interact. Proofs (HIP), Palo Alto (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendell H. Chun .

Editor information

Editors and Affiliations

Video-References

Video-References

:

Security: Facial recognition available from http://handbookofrobotics.org/view-chapter/61/videodetails/553

:

Surveillance by a drone available from http://handbookofrobotics.org/view-chapter/61/videodetails/554

:

Ground security robot available from http://handbookofrobotics.org/view-chapter/61/videodetails/677

:

People detection from a UAV available from http://handbookofrobotics.org/view-chapter/61/videodetails/678

:

UGV demo II: Outdoor surveillance robot available from http://handbookofrobotics.org/view-chapter/61/videodetails/679

:

MDARS I: Indoor security robot available from http://handbookofrobotics.org/view-chapter/61/videodetails/680

:

Scout robot for outdoor surveillance available from http://handbookofrobotics.org/view-chapter/61/videodetails/681

:

Detection of abandoned objects available from http://handbookofrobotics.org/view-chapter/61/videodetails/682

:

Tracking people for security available from http://handbookofrobotics.org/view-chapter/61/videodetails/683

:

Collaborative robots available from http://handbookofrobotics.org/view-chapter/61/videodetails/700

:

Multi-robot operator control unit available from http://handbookofrobotics.org/view-chapter/61/videodetails/701

:

Camera control from gaze available from http://handbookofrobotics.org/view-chapter/61/videodetails/702

:

Indoor, urban aerial vehicle navigation available from http://handbookofrobotics.org/view-chapter/61/videodetails/703

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chun, W.H., Papanikolopoulos, N. (2016). Robot Surveillance and Security. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics