Skip to main content

A VHDL-Based Modeling of Network Interface Card Buffers: Design and Teaching Methodology

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 595))

Abstract

The design of High Performance Computing (HPC) relies to a large extent on simulations to optimize components of such complex systems. A key hardware component of the interconnection network in HPC environments is the Network Interface Card (NIC). In spite of the popularity of simulation-based approaches in the computer architecture domain, few authors have focused on simulators design methodologies. In this paper, we describe the stages of implementing a simulation model to solve a real problem—modeling NIC buffer. We present a general methodology for helping users to build Hardware Description Language (HDL)/SystemC models targeted to fulfil features such as performance evaluation of compute nodes. The developed VHDL model allows reproducibility and can be used as a tool in the area of HPC education.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    It should be noted that in this work the terms ‘‘Ethernet frame’’, and ‘‘Ethernet packet’’, i.e., data units exchanged at the data-link level, are used interchangeably.

References

  1. Minkenberg, C., Denzel, W., Rodriguez, G., Birke, R.: End-to-end modeling and simulation of high- performance computing systems. In: Bangsow, S. (ed.) Use Cases of Discrete Event Simulation, pp. 201–240. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Liao, X.-K., Pang, Z.-B., Wang, K.-F., Lu, Y.-T., Xie, M., Xia, J., Dong, D.-Z., Suo, G.: High performance interconnect network for Tianhe system. J. Comput. Sci. Technol. 30, 259–272 (2015)

    Article  Google Scholar 

  3. Nüssle, M., Fröning, H., Kapferer, S., Brüning, U.: Accelerate communication, not computation! In: Vanderbauwhede, W., Benkrid, K. (eds.) High-Performance Computing Using FPGAs, pp. 507–542. Springer, New York (2013)

    Chapter  Google Scholar 

  4. Rodriguez, G., Minkenberg, C., Luijten, R.P., Beivide, R., Geoffray, P., Labarta, J., Valero, M., Poole, S.: The network adapter: the missing link between MPI applications and network performance. In: 2012 IEEE 24th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD), pp. 1–8 (2012)

    Google Scholar 

  5. Tan, M., Rosenberg, P., Yeo, J.S., McLaren, M., Mathai, S., Morris, T., Kuo, H.P., Straznicky, J., Jouppi, N.P., Wang, S.-Y.: A high-speed optical multi-drop bus for computer interconnections. Appl. Phys. A 95, 945–953 (2009)

    Article  Google Scholar 

  6. Taylor, S.J.E., Khan, A., Morse, K.L., Tolk, A., Yilmaz, L., Zander, J., Mosterman, P.J.: Grand challenges for modeling and simulation: simulation everywhere—from cyberinfrastructure to clouds to citizens. SIMULATION, 0037549715590594 (2015)

    Google Scholar 

  7. Abdulhameed, A., Hammad, A., Mountassir, H., Tatibouet, B.: An approach based on SysML and SystemC to simulate complex systems. In: 2014 2nd International Conference on Model-Driven Engineering and Software Development (MODELSWARD), pp. 555–560 (2014)

    Google Scholar 

  8. Bassi, L., Secchi, C., Bonfe, M., Fantuzzi, C.: A SysML-based methodology for manufacturing machinery modeling and design. IEEEASME Trans. Mechatron. 16, 1049–1062 (2011)

    Article  Google Scholar 

  9. Wang, Y., Yu, Y., Xie, C., Zhang, X., Jiang, W.: A proposed approach to mechatronics design education: Integrating design methodology, simulation with projects. Mechatronics 23, 942–948 (2013)

    Article  Google Scholar 

  10. Shafik, R.A., Al-Hashimi, B.M., Chakrabarty, K.: System-level design methodology. In: Mathew, J., Shafik, R.A., Pradhan, D.K. (eds.) Energy-Efficient Fault-Tolerant Systems, pp. 169–210. Springer, New York (2014)

    Chapter  Google Scholar 

  11. Garay, G.R., Ortega, J., Díaz, A.F., Corrales, L., Alarcón-Aquino, V.: System performance evaluation by combining RTC and VHDL simulation: a case study on NICs. J. Syst. Archit. 59, 1277–1298 (2013)

    Article  Google Scholar 

  12. Ülgen, O.: Simulation Methodology: A Practitioner’s Perspective. Dearborn MI University, Michigan (2006)

    Google Scholar 

  13. Alvarez, G.R.G.: A survey of analytical modeling of network interfaces in the era of the 10 Gigabit Ethernet. Presented at the 2009 6th International Conference on Electrical Engineering, Computing Science and Automatic Control, CCE, January 2009 (2009)

    Google Scholar 

  14. Kurose, J.F., Ross, K.W.: Computer Networking: A Top-Down Approach: International Edition. Pearson Higher Ed., New York (2013)

    Google Scholar 

  15. Karlin, S.C., Peterson, L.: Maximum packet rates for full-duplex ethernet. Department of Computer Science (2002)

    Google Scholar 

  16. Gingold, T.: Ghdl-where vhdl meets gcc. http://ghdl.free.fr

  17. Bybell, T.: Gtkwave. http://gtkwave.sourceforge.net

  18. Chakraborty, S., Künzli, S., Thiele, L., Herkersdorf, A., Sagmeister, P.: Performance evaluation of network processor architectures: combining simulation with analytical estimation. Comput. Netw. 41, 641–665 (2003)

    Article  MATH  Google Scholar 

  19. Chakraborty, S., Kunzli, S., Thiele, L.: A general framework for analysing system properties in platform-based embedded system designs. Presented at the Design, Automation and Test in Europe Conference and Exhibition (2003)

    Google Scholar 

  20. Garay, G.R., Ortega, J., Alarcon-Aquino, V.: Comparing Real-Time Calculus with the existing analytical approaches for the performance evaluation of network interfaces. In: 21st International Conference on Electrical Communications and Computers (CONIELECOMP), Los Alamitos, CA, USA, pp. 119– 124 (2011)

    Google Scholar 

  21. Thiele, L., Chakraborty, S., Gries, M., Kunzli, S.: A framework for evaluating design tradeoffs in packet processing architectures. Presented at the Proceedings of the 39th Design Automation Conference (2002)

    Google Scholar 

  22. Boudec, J.-Y.L., Thiran, P.: Network Calculus: A Theory of Deterministic Queuing Systems for the Internet. LNCS, vol. 2050. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  23. Wandeler, E., Thiele, L.: Real-Time Calculus (RTC) Toolbox (2006)

    Google Scholar 

  24. Garay, G.R., León, M., Aguilar, R., Alarcon, V.: Comparing simulation alternatives for high-level abstraction modeling of NIC’s buffer requirements in a network node. In: Electronics, Robotics and Automotive Mechanics Conference (CERMA), September 2010 (2010)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Ministry of Education and Science of Russian Federation under contract No02.G25.31.0061 12/02/2013 (Government Regulation No 218 from 09/04/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Tchernykh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Garay, G.R., Tchernykh, A., Drozdov, A.Y., Novikov, S.V., Vladislavlev, V.E. (2016). A VHDL-Based Modeling of Network Interface Card Buffers: Design and Teaching Methodology. In: Gitler, I., Klapp, J. (eds) High Performance Computer Applications. ISUM 2015. Communications in Computer and Information Science, vol 595. Springer, Cham. https://doi.org/10.1007/978-3-319-32243-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32243-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32242-1

  • Online ISBN: 978-3-319-32243-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics