Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 383))

Abstract

This article presents two methods for setting up a scanning unit with low bandwidth radar sensors with a wide opening angle of the main beam and evaluates their suitability for robotic mapping. Both approaches, namely the lateration and the ASR technique, base upon a rotary joint and provide a two-dimensional scan. The relevant theory behind both methods and considerations on erroneous influences is described in the first part of this paper. The focus of the second part is laying on application in occupancy grid and feature mapping, which will be presented through experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, M., Mullane, J., Jose, E.: Robotic Navigation and Mapping with Radar. Artech House (2012)

    Google Scholar 

  2. Agilent. Techniques for Precision Validation of Radar System Performance in the Field. Agilent Technologies (2014)

    Google Scholar 

  3. Bühren, M.: Simulation und Verarbeitung von Radarziellisten im Automobil. PhD thesis, Universität Stuttgart (2008)

    Google Scholar 

  4. Clark, S., Dissanayake, G.: Simultaneous localisation and map building using milimetre wave radar to extract natural features. In: International Conference on Robotics and Automation (1999)

    Google Scholar 

  5. Curry, G.R.: Radar System Performance Modeling. Artech House (2005)

    Google Scholar 

  6. Detlefsen, J., Rozmann, M., Lange, M.: 94 HGZ 3-D imaging radar sensor for industrial environments. EARSeL Adv. Remote Sens. (1993)

    Google Scholar 

  7. Elfes, A.: Using occupancy grid mapping for mobile robot perception and navigation. IEEE Comput. (1989)

    Google Scholar 

  8. Fölster, F.: Erfassung ausgedehnter Objekte durch ein Automobil-Radar. PhD thesis, Technische Universität Hamburg-Harburg (2006)

    Google Scholar 

  9. Fölster, F., Rohling, H.: Data association and tracking for automotive radar networks. IEEE Trans. Intell. Transp. Syst. (2005)

    Google Scholar 

  10. Kidera, S., Sakamoto, T., Toru, S.: High-resolution and real-time three-dimensional imaging algorithm with envelopes of spheres for uwb radars. IEEE Trans. Geosci. Remote Sens. (2008)

    Google Scholar 

  11. Ludloff, A.: Praxiswissen Radar und Radarsignalverarbeitung. vieweg (1998)

    Google Scholar 

  12. Marck, J.W., Mohamoud, A., Houwen, R.V., Hejster, Eric vd qnd.: Indoor radar SLAM. A radar application for vision and gps denied environments. In: 10th European Radar Conference (2013)

    Google Scholar 

  13. Mirbach, M., Menzel, W.: A simple surface estimation algorithm for uwb pulse radas based on trilateration. IEEE International Conference on Ultra-Wideband (2011)

    Google Scholar 

  14. Rabe, H., Denicke, E., Armbrecht, G., Musch, T., Rolfes, I.: Considerations on radar localization in multi-target environments. Adv. Radio Sci. (2009)

    Google Scholar 

  15. Sakamoto, T.: A fast algorithm for 3-dimensional imaging with uwb pulse radar systems. IEICE Trans. Commun. (2007)

    Google Scholar 

  16. Schmid, G., Neubauer, G.: Bestimmung der exposition durch ultra-wideband technologien. Technical report, Bundesamt für Strahlenschutz (2007)

    Google Scholar 

  17. Schneider, M.: LSB-Methode Bestimmung von Distanzunterschieden mittels parametrierter Schwebungen. PhD thesis, Universität Rostock (2013)

    Google Scholar 

  18. Tadokoro, S.: Rescue Robotics—DDT Project on Robots and Systems for Uraban Search and Rescue. Springer (2009)

    Google Scholar 

  19. Thrun, S.: Robotic Mapping: A Survey. School of Comuputer Science (2002)

    Google Scholar 

  20. Thrun, S., Burgard, W., Fox, D.: Probalistic Robotics. The MIT Press (2005)

    Google Scholar 

Download references

Acknowledgments

This work has partly been supported within H2020-ICT by the European Commission under grant agreement number 645101 (SmokeBot).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Fritsche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Fritsche, P., Wagner, B. (2016). Scanning Techniques with Low Bandwidth Radar for Robotic Mapping and Localization. In: Filipe, J., Madani, K., Gusikhin, O., Sasiadek, J. (eds) Informatics in Control, Automation and Robotics 12th International Conference, ICINCO 2015 Colmar, France, July 21-23, 2015 Revised Selected Papers. Lecture Notes in Electrical Engineering, vol 383. Springer, Cham. https://doi.org/10.1007/978-3-319-31898-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31898-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31896-7

  • Online ISBN: 978-3-319-31898-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics