Skip to main content

Label-Free Quantification by Data Independent Acquisition Mass Spectrometry to Map Cardiovascular Proteomes

  • Chapter
  • First Online:
Manual of Cardiovascular Proteomics

Abstract

The large-scale identification and quantification of proteins by liquid chromatography mass spectrometry (LC MS) can be achieved by at least three general methods, categorized into targeted, data independent (DIA), and data dependent (DDA) acquisition modes. Each acquisition strategy has its own set of benefits and drawbacks, and the methods serve complementary purposes for the study of protein quantification in biological samples. While not specific to research in cardiovascular physiology, a long-standing but recently popularized proteomic approach, termed Data Independent Acquisition Mass Spectrometry (DIA-MS), promises unique strengths to complement and extend the existing capabilities of traditional “discovery” proteomic profiling by combining development of a peptide library and DIA-MS. In this chapter we will provide background on the DIA-MS technique, highlighting its fundamental differences relative to other mass spectrometry methods, and discuss important considerations for researchers interested in implementing this technique for their proteomic experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Michalski A, Cox J, Mann M. More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. J Proteome Res. 2011;10(4):1785–93.

    Article  CAS  PubMed  Google Scholar 

  2. Liu H, Sadygov RG, Yates 3rd JR. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem. 2004;76(14):4193–201.

    Article  CAS  PubMed  Google Scholar 

  3. Lambert JP, Ivosev G, Couzens AL, Larsen B, Taipale M, Lin ZY, et al. Mapping differential interactomes by affinity purification coupled with data-independent mass spectrometry acquisition. Nat Methods. 2013;10(12):1239–45. Pubmed Central PMCID: 3882083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bateman NW, Goulding SP, Shulman NJ, Gadok AK, Szumlinski KK, MacCoss MJ, et al. Maximizing peptide identification events in proteomic workflows using data-dependent acquisition (DDA). Mol Cell Proteomics MCP. 2014;13(1):329–38. Pubmed Central PMCID: 3879624.

    Article  CAS  PubMed  Google Scholar 

  5. Venable JD, Dong MQ, Wohlschlegel J, Dillin A, Yates JR. Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nat Methods. 2004;1(1):39–45.

    Article  CAS  PubMed  Google Scholar 

  6. Bilbao A, Varesio E, Luban J, Strambio-De-Castillia C, Hopfgartner G, Muller M, et al. Processing strategies and software solutions for data-independent acquisition in mass spectrometry. Proteomics. 2015;15(5–6):964–80.

    Article  CAS  PubMed  Google Scholar 

  7. Gillet LC, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics MCP. 2012;11(6):O111016717-1-17. Pubmed Central PMCID: 3433915.

    Google Scholar 

  8. Tsou CC, Avtonomov D, Larsen B, Tucholska M, Choi H, Gingras AC, et al. DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics. Nat Methods. 2015;12(3):258–64, 7 p following 64. Pubmed Central PMCID: 4399776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gillet LC, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics MCP. 2012;11(6):O111 016717. Pubmed Central PMCID: 3433915.

    Google Scholar 

  10. Guo T, Kouvonen P, Koh CC, Gillet LC, Wolski WE, Rost HL, et al. Rapid mass spectrometric conversion of tissue biopsy samples into permanent quantitative digital proteome maps. Nat Med. 2015;21(4):407–13. Pubmed Central PMCID: 4390165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schubert OT, Gillet LC, Collins BC, Navarro P, Rosenberger G, Wolski WE, et al. Building high-quality assay libraries for targeted analysis of SWATH MS data. Nat Protoc. 2015;10(3):426–41.

    Article  CAS  PubMed  Google Scholar 

  12. Parker SJ, Roest H, Rosenberger G, Collins BC, Malstroem L, Amodei D, et al. Identification of a set of conserved eukaryotic internal retention time standards for data-independent acquisition mass spectrometry. Mol Cell Proteomics MCP. 2015;14(10):2800–13.

    Google Scholar 

  13. Toprak UH, Gillet LC, Maiolica A, Navarro P, Leitner A, Aebersold R. Conserved peptide fragmentation as a benchmarking tool for mass spectrometers and a discriminating feature for targeted proteomics. Mol Cell Proteomics MCP. 2014;13(8):2056–71. Pubmed Central PMCID: 4125737.

    Article  CAS  PubMed  Google Scholar 

  14. Escher C, Reiter L, MacLean B, Ossola R, Herzog F, Chilton J, et al. Using iRT, a normalized retention time for more targeted measurement of peptides. Proteomics. 2012;12(8):1111–21. Pubmed Central PMCID: 3918884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Egertson JD, Kuehn A, Merrihew GE, Bateman NW, MacLean BX, Ting YS, et al. Multiplexed MS/MS for improved data-independent acquisition. Nat Methods. 2013;10(8):744–6. Pubmed Central PMCID: 3881977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics. 2010;26(7):966–8. Pubmed Central PMCID: 2844992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang Y, Bilbao A, Bruderer T, Luban J, Strambio-De-Castillia C, Lisacek F, et al. The use of variable Q1 isolation windows improves selectivity in LC-SWATH-MS acquisition. J Proteome Res. 2015;14(10):4359–71.

    Article  CAS  PubMed  Google Scholar 

  18. Teo G, Kim S, Tsou CC, Collins B, Gingras AC, Nesvizhskii AI, et al. mapDIA: Preprocessing and statistical analysis of quantitative proteomics data from data independent acquisition mass spectrometry. J Proteomics. 2015;129:108–20. Pubmed Central PMCID: 4630088.

    Article  CAS  PubMed  Google Scholar 

  19. Collins BC, Gillet LC, Rosenberger G, Rost HL, Vichalkovski A, Gstaiger M, et al. Quantifying protein interaction dynamics by SWATH mass spectrometry: application to the 14-3-3 system. Nat Methods. 2013;10(12):1246–53.

    Article  CAS  PubMed  Google Scholar 

  20. Choi M, Chang CY, Clough T, Broudy D, Killeen T, MacLean B, et al. MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Bioinformatics. 2014;30(17):2524–6.

    Article  CAS  PubMed  Google Scholar 

  21. Keller A, Bader SL, Shteynberg D, Hood L, Moritz RL. Automated validation of results and removal of fragment Ion interferences in targeted analysis of data-independent acquisition mass spectrometry (MS) using SWATHProphet. Mol Cell Proteomics MCP. 2015;14(5):1411–8. Pubmed Central PMCID: 4424409.

    Article  CAS  PubMed  Google Scholar 

  22. Rardin MJ, Schilling B, Cheng LY, MacLean BX, Sorensen DJ, Sahu AK, et al. MS1 peptide ion intensity chromatograms in MS2 (SWATH) data independent acquisitions. Improving post acquisition analysis of proteomic experiments. Mol Cell Proteomics MCP. 2015;14(9):2405–19.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah J. Parker PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Parker, S.J., Holewinski, R.J., Tchernyshyov, I., Venkatraman, V., Parker, L., Van Eyk, J.E. (2016). Label-Free Quantification by Data Independent Acquisition Mass Spectrometry to Map Cardiovascular Proteomes. In: Agnetti, G., Lindsey, M., Foster, D. (eds) Manual of Cardiovascular Proteomics. Springer, Cham. https://doi.org/10.1007/978-3-319-31828-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31828-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31826-4

  • Online ISBN: 978-3-319-31828-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics