Skip to main content

Tracking a Real Liver Using a Virtual Liver and an Experimental Evaluation with Kinect v2

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2016)

Abstract

In this study, we propose a smart transcription algorithm for translation and/or rotation motions. This algorithm has two phases: calculating the differences between real and virtual 2D depth images, and searching the motion space defined by three translation and three rotation degrees of freedom based on the depth differences. One depth image is captured for a real liver using a Kinect v2 depth camera and another depth image is obtained for a virtual liver (a polyhedron in stereo-lithography (STL) format by z-buffering with a graphics processing unit). The STL data are converted from Digital Imaging and Communication in Medicine (DICOM) data, where the DICOM data are captured from a patient’s liver using magnetic resonance imaging and/or a computed tomography scanner. In this study, we evaluated the motion precision of our proposed algorithm based on several experiments based using a Kinect v2 depth camera.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Besl, P.J., McKay, N.D.: A method for registration of 3-D Shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

  2. Zhang, Z.: Iterative point matching for registration of free-form surfaces. J. Comput. Vis. 13(2), 119–152 (1994)

    Article  Google Scholar 

  3. Granger, S., Pennec, X.: Multi-scale EM-ICP: a fast and robust approach for surface registration. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 418–432. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Liu, Y.: Automatic registration of overlapping 3D point clouds using closest points. J. Image Vis. Comput. 24(7), 762–781 (2006)

    Article  Google Scholar 

  5. Salvi, J., Matabosch, C., Fofi, D., Forest, J.: A review of recent range image registration methods with accuracy evaluation. J. Image Vis. Comput. 25, 578–596 (2007)

    Article  Google Scholar 

  6. Rusu, R.B., Cousins, S.: 3D is here: Point Cloud Library (PCL): In: IEEE International Conference on Robotics and Automation, pp. 1–4 (2011)

    Google Scholar 

  7. Wu, Y.F., Wang, W., Lu, K.Q., Wei, Y.D., Chen, Z.C.: A new method for registration of 3D point sets with low overlapping ratios. In: 13th CIRP Conference on Computer Aided Tolerancing, pp. 202–206 (2015)

    Google Scholar 

  8. Noborio, H., Watanabe, K., Yagi, M., Ida, Y., Onishi, K., Koeda, M., Nankaku, S., Matsui, K., Kon, M., Kaibori, M.: Image-based initial position/orientation adjustment system between real and virtual livers. Jurnal Teknologi, Med. Eng. 77(6), 41–45 (2015). Penerbit UTM Press

    Google Scholar 

  9. Noborio, H., Onishi, K., Koeda, M., Mizushino, K., Yagi, M., Kaibori, M., Kwon, M.: Motion transcription algorithm by matching corresponding depth image and Z-buffer. In: 10th Anniversary Asian Conference on Computer Aided Surgery, pp. 60–61. Kyusyu University, Japan, June 2014

    Google Scholar 

  10. Watanabe, K., Yagi, M., Ota, K., Onishi, K., Koeda, M., Nankaku, S., Noborio, H., Kon, M., Matsui, K., Kaibori, M.: Parameter identification of depth-depth-matching algorithm for liver following. Jurnal Teknologi, Med. Eng. 77(6), 35–39 (2015). Penerbit UTM Press

    Google Scholar 

  11. Watanabe, K., Yagi, M., Shintani, A., Nankaku, S., Onishi, K., Koeda, M., Noborio, H., Kon, M., Matsui, K., Kaibori, M.: A new 2D depth-depth matching algorithm whose translation and rotation freedoms are separated. In: International Conference on Intelligent Informatics and Biomedical Sciences, Okinawa Japan, pp. 271–278, November 2015

    Google Scholar 

  12. Noborio, H., Watanabe, K., Yagi, M., Ida, Y., Nankaku, S., Onishi, K., Koeda, H., Kon, M., Matsui, K., Kaibori, M.: Experimental results of 2D depth–depth matching algorithm based on depth camera Kinect v1. J. Bioinform. Neurosci. 1(1), 38–44 (2015). ISSN: 2188-8116

    Google Scholar 

  13. Koeda, M., Tsukushi, A., Noborio, H., Onishi, K., Mizushino, K., Kunii, T., Watanabe, K., Kaibori, M., Matsui, K., Kwon, M.: Depth camera calibration and knife tip position estimation for liver surgery support system. In: 17th International Conference on Human-Computer Interaction, Los Angeles, CA, USA, pp. 496–502 August 2015

    Google Scholar 

  14. Doi, M., Yano, D., Koeda, M., Noborio, H., Onishi, K., Kayaki, M., Mizushino, K., Matsui, K., Kaibori, M.: Knife tip position estimation using multiple markers for liver surgery support. In: 6th International Conference on Advanced Mechatronics (ICAM 2015), pp. 74–75. Nishiwaseda Campus of Waseda University, Tokyo Japan, 1A2-08, 5–8 December 2015

    Google Scholar 

  15. Noborio, H., Kunii, T., Mizushino, K.: GPU-based shortest distance algorithm for liver surgery navigation. In: 10th Anniversary Asian Conference on Computer Aided Surgery, pp. 42–43. Kyusyu University, Japan, June 2014

    Google Scholar 

  16. Noborio, H., Kunii, T., Mizushino, K.: Comparison of GPU-based and CPU-based algorithms for determining the minimum distance between a CUSA scalpel and blood vessels. In: The 7th International Conference on Bioinformatics Models, Methods and Algorithms, Roma, Italy (to appear)

    Google Scholar 

  17. Onishi, K., Noborio, H., Koeda, M., Watanabe, K., Mizushino, K., Kunii, T., Kaibori, M., Matsui, K., Kwon, M.: Virtual liver surgical simulator by using Z-buffer for object deformation. In: 17th International Conference on Human-Computer Interaction (HCII 2015), Los Angeles, CA, USA, pp. 345–351 August 2015

    Google Scholar 

  18. Noborio, H., Onishi, K., Koeda, M., Mizushino, K., Kunii, T., Kaibori, M., Kon, M., Chen, Y.-W.: Fast surgical algorithm for cutting with liver standard triangulation language format using Z-Buffers in graphics processing unit. In: Fujie, M. (ed.) Computer Aided Surgery, pp. 127–140. Springer, Japan (2016). doi:10.1007/978-4-431-55810-1_11

    Chapter  Google Scholar 

Download references

Acknowledgments

This study was supported partly by 2014 Grants-in-Aid for Scientific Research (No. 26289069) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan. Further support was provided by the 2014 Cooperation Research Fund from the Graduate School at Osaka Electro-Communication University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Noborio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Noborio, H. et al. (2016). Tracking a Real Liver Using a Virtual Liver and an Experimental Evaluation with Kinect v2. In: Ortuño, F., Rojas, I. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2016. Lecture Notes in Computer Science(), vol 9656. Springer, Cham. https://doi.org/10.1007/978-3-319-31744-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31744-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31743-4

  • Online ISBN: 978-3-319-31744-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics