Skip to main content

Another Look at Aggregate Signatures: Their Capability and Security on Network Graphs

  • Conference paper
  • First Online:
Trusted Systems (INTRUST 2015)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9565))

Included in the following conference series:

Abstract

Aggregate signatures are digital signatures where n signers sign n individual documents and can aggregate individual signatures into a single short signature. Although aggregate signatures are expected to enhance the security of network applications, the capability and the security of aggregate signatures have not yet been discussed when the signatures are generated by a group of signers whose relationships are expressed as network. In this paper, we take into account the fact that various network applications can be mathematically idealized as network called network graphs, and discuss the properties of aggregate signatures on network graphs. We show that it is difficult to apply aggregate signatures to the network graphs. More precisely, we show that sequential aggregate signatures (Eurocrypt 2004) are incompatible with the network graphs and also general aggregate signatures (Crypto 2003) are broken by some generic attack. Additionally, we propose two generic approaches to overcoming the problems: restricting the number of signers and utilizing ring homomorphism, and give a security proof of aggregate signatures in each of these approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn, J.H., Green, M., Hohenberger, S.: Synchronized aggregate signatures: new definitions, constructions and applications. In: Proceedings of CCS 2011, pp. 473–484. ACM (2010)

    Google Scholar 

  2. Attrapadung, N., Libert, B., Peters, T.: Efficient completely context-hiding quotable and linearly homomorphic signatures. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 386–404. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Bellare, M., Namprempre, C., Neven, G.: Unrestricted aggregate signatures. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 411–422. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Bodlaender, H.L., de Fluiter, B.: Parallel algorithms for series parallel graphs. In: Diaz, J., Serna, M. (eds.) ESA 1996. LNCS, vol. 1136, pp. 277–289. Springer, Heidelberg (1996)

    Google Scholar 

  5. Boldyreva, A., Gentry, C., O’Neill, A., Yum, D.H.: Ordered multisignatures and identity-based sequential aggregate signatures, with applications to secure routing (extended abstract). In: Proceedings of CCS, pp. 276–285. ACM (2007)

    Google Scholar 

  6. Boldyreva, A., Gentry, C., O’Neill, A., Yum, D.H.: Ordered multisignatures and identity-based sequential aggregate signatures, with applications to secure routing (extended abstract), (full paper) (2010)

    Google Scholar 

  7. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Jain, A., Krenn, S., Pietrzak, K., Tentes, A.: Commitments and efficient zero-knowledge proofs from learning parity with noise. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 663–680. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Camacho, P., Hevia, A.: Short Transitive Signatures for Directed Trees. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 35–50. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Camenisch, J.L., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion router. In: Proceedings of Usenix Security 2004 (2004)

    Google Scholar 

  12. Fischlin, M., Lehmann, A., Schröder, D.: History-free sequential aggregate signatures. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 113–130. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Gentry, C., Ramzan, Z.: Identity-based aggregate signatures. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 257–273. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Gerbush, M., Lewko, A., O’Neill, A., Waters, B.: Dual form signatures: an approach for proving security from static assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 25–42. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Giesen, F., Kohlar, F., Stebila, D.: On the security of tls renegotiation. In: Proceedings of CCS 2013, pp. 387–398. ACM (2013)

    Google Scholar 

  16. Hohenberger, S., Koppula, V., Waters, B.: Universal signature aggregators. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 3–34. Springer, Heidelberg (2015)

    Google Scholar 

  17. Hohenberger, S., Sahai, A., Waters, B.: Full domain hash from (leveled) multilinear maps and identity-based aggregate signatures. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 494–512. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  18. Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: full domain hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  19. Hu, Y.C., Perrig, A., Johnson, D.B.: Ariadne: a secure on demand routing protocol for ad hoc network. Wireless Netw. 11, 21–38 (2005)

    Article  Google Scholar 

  20. Hwang, J.Y., Lee, D.H., Yung, M.: Universal forgery of the identity-based sequential aggregate signature scheme. In: Proceedings of ASIACCS, pp. 157–160. ACM (2009)

    Google Scholar 

  21. Kent, S., Lynn, C., Seo, K.: Secure border gateway protocol. IEEE J. Sel. Areas Commun. 18(4), 582–592 (2000)

    Article  Google Scholar 

  22. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: a systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 429–448. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  23. Lee, K., Lee, D.H., Yung, M.: Aggregating CL-signatures revisited: extended functionality and better efficiency. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 171–188. Springer, Heidelberg (2013). http://fc13.ifca.ai/proc/5-2.pdf

    Chapter  Google Scholar 

  24. Lee, K., Lee, D.H., Yung, M.: Sequential aggregate signatures with short public keys: design, analysis and implementation studies. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 423–442. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  25. Lepinski, M., Turner, S.: An overview of bgpsec, October 2011. Internet Draft. http://tools.ietf.org/html/draft-ietf-sidr-bgpsec-overview-01

  26. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  27. Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate signatures from trapdoor permutations. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  28. Neven, G.: Efficient sequential aggregate signed data. IEEE Trans. Inf. Theor. 57(3), 1803–1815 (2011)

    Article  MathSciNet  Google Scholar 

  29. Rekhter, Y., Li, T.: A border gateway protocol 4 (bgp-4). RFC 1771, March 1995. http://www.ietf.org/rfc/rfc1771.txt

  30. Rückert, M., Schröder, D.: Aggregate and verifiably encrypted signatures from multilinear maps without random oracles. In: Park, J.H., Chen, H.-H., Atiquzzaman, M., Lee, C., Kim, T., Yeo, S.-S. (eds.) ISA 2009. LNCS, vol. 5576, pp. 750–759. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  31. Schröder, D.: How to aggregate the CL signature scheme. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 298–314. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  32. Sun, Y., Edmundson, A., Vanbever, L., Li, O., Rexford, J., Chiang, M., Mittal, P.: Raptor: routing attacks on privacy in tor. In: Proceedings of Usenix Security 2015, pp. 271–286 (2015)

    Google Scholar 

  33. Tada, M.: A secure multisignature scheme with signing order verifiability. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 86(1), 73–88 (2003)

    MathSciNet  Google Scholar 

  34. Valera, F., Beijnum, I.V., Garcia-Martinez, A., Bagnulo, M.: Multi-path BGP: Motivations and Solutions, Chapter 1, pp. 238–256. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  35. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  36. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  37. Zhao, M., Smith. S., Nicol, D.: Aggregated path authentication for efficient bgp security. In: Proceedings of CCS, pp. 128–138. ACM (2005)

    Google Scholar 

Download references

Acknowledgement

Part of this research is supported by JSPS A3 Foresight Program. The first author is also supported by Support Center for Advanced Telecommunications Technology Research and JSPS KAKENHI Grant Numbers 26880012, 26330151. We would like to appreciate their supports. We would also like to appreciate Shin-Akarui-Angou-Benkyou-Kai for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoto Yanai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Yanai, N., Mambo, M., Tanaka, K., Nishide, T., Okamoto, E. (2016). Another Look at Aggregate Signatures: Their Capability and Security on Network Graphs. In: Yung, M., Zhang, J., Yang, Z. (eds) Trusted Systems. INTRUST 2015. Lecture Notes in Computer Science(), vol 9565. Springer, Cham. https://doi.org/10.1007/978-3-319-31550-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31550-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31549-2

  • Online ISBN: 978-3-319-31550-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics