Skip to main content

Population Dynamics of Temperate Corals in a Changing Climate

  • Chapter
  • First Online:
The Cnidaria, Past, Present and Future

Abstract

In contrast with the number of studies on tropical species, analyses of the variation of growth parameters with environmental variables in temperate areas are very scarce. Notwithstanding the importance of obtaining information on coral population dynamics, few studies have quantified demographic parameters of scleractinian corals, partly because of the processes of fragmentation, fusion and partial colony mortality, which cause corals of similar size to be of widely different ages, thus distorting the age-size relationships. Available literature on growth and population dynamics of natural populations of temperate scleractinians is reviewed in the present work. As general trends, it seems that: (1) solitary species have a definite growth pattern, in contrast with colonial species; (2) symbiotic species are more sensitive to increasing temperatures and more vulnerable to global warming; (3) non-symbiotic species are more tolerant to increasing temperature, but may be negatively affected by the indirect effects of increasing solar radiation; and (4) even if the energy resulting from photosynthesis may increase as a consequence of ocean acidification, the growth and abundance of symbiotic corals seem to be negatively affected by acidification and the negative response of non-symbiotic corals is expected to be even stronger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Horani FA (2005) Effects of changing seawater temperature on photosynthesis and calcification in the scleractinian coral Galaxea fascicularis, measured with O2, Ca2+ and pH microsensors. Sci Mar 69:347–354

    Article  CAS  Google Scholar 

  • Al-Horani FA, Ferdelman T, Al-Moghrabi SM, de Beer D (2005) Spatial distribution of calcification and photosynthesis in the scleractinian coral Galaxea fascicularis. Coral Reefs 24:173–180

    Article  Google Scholar 

  • Anderson KD, Pratchett MS (2014) Variation in size-frequency distributions of branching corals between a tropical versus sub-tropical reef. Mar Ecol Prog Ser 502:117–128

    Article  Google Scholar 

  • Babcock RC (1991) Comparative demography of three species of scleractinian corals using age- and size-dependent classifications. Ecol Monogr 6:225–244

    Article  Google Scholar 

  • Bablet JP (1985) Report on the growth of a scleractinian. Proc 5th international coral reef symposium 4, pp 361–365

    Google Scholar 

  • Baird AH, Marshall PA (2002) Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar Ecol Prog Ser 237:133–141

    Article  Google Scholar 

  • Bak RPM, Meesters EH (1998) Coral population structure: the hidden information of colony size-frequency distributions. Mar Ecol Prog Ser 162:301–306

    Article  Google Scholar 

  • Barnes DJ, Lough JM (1989) The nature of skeletal density banding in scleractinian corals: fine banding and seasonal patterns. J Exp Mar Biol Ecol 2:119–134

    Article  CAS  Google Scholar 

  • Bauman AG, Pratchett MS, Baird AH, Riegl B, Heron SF, Feary DA (2013) Variation in the size structure of corals is related to environmental extremes in the Persian Gulf. Mar Environ Res 84:43–50

    Article  CAS  PubMed  Google Scholar 

  • Bosscher H (1993) Computerized tomography and skeletal density of coral skeletons. Coral Reefs 12:97–103

    Article  Google Scholar 

  • Bramanti L, Iannelli M, Fan TY, Edmunds PJ (2015) Using demographic models to project the effects of climate change on scleractinian corals: Pocillopora damicornis as a case study. Coral Reefs 34:505–515

    Article  Google Scholar 

  • Browne NK (2012) Spatial and temporal variations in coral growth on an inshore turbid reef subjected to multiple disturbances. Mar Environ Res 77:71–83

    Article  CAS  PubMed  Google Scholar 

  • Bucher DJ, Harriott VJ, Roberts LG (1998) Skeletal micro-density, porosity and bulk density of acroporid corals. J Exp Mar Biol Ecol 228:117–136

    Article  Google Scholar 

  • Buddemeier RW, Kinzie RA III (1976) Coral growth. Oceanogr Mar Biol Annu Rev 14:183–225

    Google Scholar 

  • Cantin NE, Lough JM (2014) Surviving coral bleaching events: Porites growth anomalies on the Great Barrier Reef. PLoS One 9:e88720

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cantin NE, Cohen AL, Karnauskas KB, Tarrant AM, McCorkle DC (2010) Ocean warming slows coral growth in the Central Red Sea. Science 329:322–325

    Article  CAS  PubMed  Google Scholar 

  • Carlon DB (2002) Production and supply of larvae as determinants of zonation in a brooding tropical coral. J Exp Mar Biol Ecol 268:33–46

    Article  Google Scholar 

  • Caroselli E, Prada F, Pasquini L, Nonnis Marzano F, Zaccanti F, Falini G, Levy O, Dubinsky Z, Goffredo S (2011) Environmental implications of skeletal micro-density and porosity variation in two scleractinian corals. Zoology 114:255–264

    Article  PubMed  Google Scholar 

  • Caroselli E, Mattioli G, Levy O, Falini G, Dubinsky Z, Goffredo S (2012a) Inferred calcification rate of a Mediterranean azooxanthellate coral is uncoupled with sea surface temperature along an 8° latitudinal gradient. Front Zool 9:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caroselli E, Zaccanti F, Mattioli G, Falini G, Levy O, Dubinsky Z, Goffredo S (2012b) Growth and demography of the solitary scleractinian coral Leptopsammia pruvoti along a sea surface temperature gradient in the Mediterranean Sea. PLoS One 7:e37848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caroselli E, Nanni V, Levy O, Falini G, Dubinsky Z, Goffredo S (2015a) Latitudinal variations in biometry and population density of a Mediterranean solitary coral. Limnol Oceanogr 60:1356–1370

    Article  Google Scholar 

  • Caroselli E, Falini G, Goffredo S, Dubinsky Z, Levy O (2015b) Negative response of photosynthesis to natural and projected high seawater temperatures estimated by pulse amplitude modulation fluorometry in a temperate coral. Front Physiol 6:317

    Google Scholar 

  • Caroselli E, Ricci F, Brambilla V, Mattioli G, Levy O, Falini G, Dubinsky Z, Goffredo S (2016a) Relationships between growth, population dynamics, and environmental parameters in the solitary non-zooxanthellate scleractinian coral Caryophyllia inornata along a latitudinal gradient in the Mediterranean Sea. Coral Reefs 35:507–519

    Google Scholar 

  • Caroselli E, Brambilla V, Ricci F, Mattioli G, Levy O, Falini, Dubinsky Z, Goffredo S (2016b) Inferred calcification rate of a temperate non-zooxanthellate caryophylliid coral along a wide latitudinal gradient. Coral Reefs doi: 10.1007/s00338-016-1422-3

    Google Scholar 

  • Carricart-Ganivet JP (2004) Sea surface temperature and the growth of the West Atlantic reef-building coral Montastraea annularis. J Exp Mar Biol Ecol 302:249–260

    Article  Google Scholar 

  • Carricart-Ganivet JP, Vasquez-Bedoya LF, Cabanillas-Teran N, Blanchon P (2013) Gender-related differences in the apparent timing of skeletal density bands in the reef-building coral Siderastrea siderea. Coral Reefs 32:769–777

    Article  Google Scholar 

  • Cerrano C, Bavestrello G, Bianchi CN, Cattaneo-Vietti R, Bava S, Morganti C, Morri C, Picco P, Sara G, Schiaparelli S, Siccardi A, Sponga F (2000) A catastrophic mass-mortality episode of gorgonians and other organisms in the Ligurian Sea (North-Western Mediterranean), summer 1999. Ecol Lett 3:284–293

    Article  Google Scholar 

  • Chadwick-Furman NE, Goffredo S, Loya Y (2000) Growth and population dynamic model of the reef coral Fungia granulosa Kluzinger, 1879 at Eilat, northern Red Sea. J Exp Mar Biol Ecol 249:199–218

    Article  PubMed  Google Scholar 

  • Connell JH (1973) Population ecology of reef building corals. In: Jones OA, Endean R (eds) Biology and geology of coral reefs, vol II, Biology 1. Academic, New York

    Google Scholar 

  • Cooper TF, De’ath G, Fabricius KE, Lough JM (2008) Declining coral calcification in massive Porites in two nearshore regions of the northern Great Barrier Reef. Glob Chang Biol 14:529–538

    Article  Google Scholar 

  • Crook ED, Cohen AL, Rebolledo-Vieyrac M, Hernandez L, Paytan A (2013) Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidification. Proc Natl Acad Sci U S A 110:11044–11049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Ortenzio F, Ribera d’Alcalà M (2009) On the trophic regimes of the Mediterranean Sea: a satellite analysis. Biogeosciences 6:139–148

    Article  Google Scholar 

  • Dimond J, Carrington E (2007) Temporal variability in the symbiosis and growth of the temperate scleractinian coral Astrangia poculata. Mar Ecol Prog Ser 348:161–172

    Article  CAS  Google Scholar 

  • Dodge RE, Brass GW (1984) Skeletal extension, density and calcification of the reef coral, Montastraea annularis: St. Croix, U.S. Virgin Islands. Bull Mar Sci 34:288–307

    Google Scholar 

  • Edmunds PJ (2010) Population biology of Porites astreoides and Diploria strigosa on a shallow Caribbean reef. Mar Ecol Prog Ser 418:87–104

    Article  Google Scholar 

  • Edmunds PJ (2015) A quarter-century demographic analysis of the Caribbean coral, Orbicella annularis, and projections of population size over the next century. Limnol Oceanogr 60:840–855

    Article  Google Scholar 

  • Elizalde-Rendon EM, Horta-Puga G, Gonzalez-Diaz P, Carricart-Ganivet JP (2010) Growth characteristics of the reef-building coral Porites astreoides under different environmental conditions in the Western Atlantic. Coral Reefs 29:607–614

    Article  Google Scholar 

  • Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Chang 1:165–169

    Article  CAS  Google Scholar 

  • Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432

    Article  CAS  Google Scholar 

  • Fadlallah YH (1983) Population dynamics and life history of a solitary coral, Balanophyllia elegans, from Central California. Oecologia 58:200–207

    Article  Google Scholar 

  • Fantazzini P, Mengoli S, Evangelisti S, Pasquini L, Mariani M, Brizi L, Goffredo S, Caroselli E, Prada F, Falini G, Levy O, Dubinsky Z (2013) A time-domain nuclear magnetic resonance study of Mediterranean scleractinian corals reveals skeletal-porosity sensitivity to environmental changes. Environ Sci Technol 47:12679–12686

    Article  CAS  PubMed  Google Scholar 

  • Fantazzini P, Mengoli S, Pasquini L, Bortolotti V, Brizi L, Mariani M, Di Giosia M, Fermani S, Capaccioni B, Caroselli E, Prada F, Zaccanti F, Levy O, Dubinsky Z, Kaandorp JA, Konglerd P, Hammel JU, Dauphin Y, Cuif J-P, Weaver JC, Fabricius KE, Wagermaier W, Fratzl P, Falini G, Goffredo S (2015) Gains and losses of coral skeletal porosity changes with ocean acidification acclimation. Nat Commun 6:7785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster KA, Foster G (2013) Demography and population dynamics of massive coral communities in adjacent high latitude regions (United Arab Emirates). PLoS One 8:e71049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukami H, Chen CA, Budd AF, Collins A, Wallace C, Chuang Y-Y, Chen C, Dai C-F, Iwao K, Sheppard C, Knowlton N (2008) Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria). PLoS One 3:e3222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garrabou J, Perez T, Sartoretto S, Harmelin JG (2001) Mass mortality in red coral Corallium rubrum populations in the Provence region (France, NW Mediterranean). Mar Ecol Prog Ser 217:263–272

    Article  Google Scholar 

  • Garrabou J, Coma R, Bensoussan N, Bally M, Chevaldonne P, Cigliano M, Diaz D, Harmelin JG, Gambi MC, Kersting DK, Ledoux JB, Lejeusne C, Linares C, Marschal C, Perez T, Ribes M, Romano JC, Serrano E, Teixido N, Torrents O, Zabala M, Zuberer F, Cerrano C (2009) Mass mortality in the NW Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob Chang Biol 15:1090–1103

    Article  Google Scholar 

  • Gattuso JP, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am Zool 39:160–183

    Article  CAS  Google Scholar 

  • Gerrodette T (1979) Ecological studies of two temperate solitary corals. PhD thesis. Scripps Institution of Oceanography, University of California, San Diego

    Google Scholar 

  • Glassom D, Chadwick NE (2006) Recruitment, growth and mortality of juvenile corals at Eilat, northern Red Sea. Mar Biol 142:411–418

    Google Scholar 

  • Goffredo S, Chadwick-Furman NE (2003) Comparative demography of mushroom corals (Scleractinia, Fungiidae) at Eilat, northern Red Sea. Mar Biol 142:411–418

    Google Scholar 

  • Goffredo S, Lasker HR (2006) Modular growth of a gorgonian coral generates predictable patterns of colony and population growth. J Exp Mar Biol Ecol 336:221–229

    Article  Google Scholar 

  • Goffredo S, Lasker HR (2008) An adaptive management approach to an octocoral fishery based on the Beverton-Holt model. Coral Reefs 27:751–761

    Article  Google Scholar 

  • Goffredo S, Zaccanti F (2004) Laboratory observations of larval behavior and metamorphosis in the Mediterranean solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Bull Mar Sci 74:449–458

    Google Scholar 

  • Goffredo S, Mattioli G, Zaccanti F (2004) Growth and population dynamics model of the Mediterranean solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Coral Reefs 23:433–443

    Article  Google Scholar 

  • Goffredo S, Radetić J, Airi V, Zaccanti F (2005) Sexual reproduction of the solitary sunset cup coral Leptopsammia pruvoti (Scleractinia, Dendrophylliidae) in the Mediterranean. 1. Morphological aspects of gametogenesis and ontogenesis. Mar Biol 147:485–495

    Article  Google Scholar 

  • Goffredo S, Airi V, Radetić J, Zaccanti F (2006) Sexual reproduction of the solitary sunset cup coral Leptopsammia pruvoti (Scleractinia, Dendrophylliidae) in the Mediterranean. 2. Quantitative aspects of the annual reproductive cycle. Mar Biol 148:923–932

    Article  Google Scholar 

  • Goffredo S, Caroselli E, Pignotti E, Mattioli G, Zaccanti F (2007) Variation in biometry and population density of solitary corals with environmental factors in the Mediterranean Sea. Mar Biol 152:351–361

    Article  Google Scholar 

  • Goffredo S, Caroselli E, Mattioli G, Pignotti E, Zaccanti F (2008) Relationships between growth, population structure and sea surface temperature in the temperate solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Coral Reefs 27:623–632

    Article  Google Scholar 

  • Goffredo S, Caroselli E, Mattioli G, Pignotti E, Dubinsky Z, Zaccanti F (2009) Inferred level of calcification decreases along an increasing temperature gradient in a Mediterranean endemic coral. Limnol Oceanogr 54:930–937

    Article  CAS  Google Scholar 

  • Goffredo S, Caroselli E, Mattioli G, Zaccanti F (2010) Growth and population dynamic model for the non-zooxanthellate temperate solitary coral Leptopsammia pruvoti (Scleractinia, Dendrophylliidae). Mar Biol 157:2603–2612

    Article  Google Scholar 

  • Goffredo S, Prada F, Caroselli E, Capaccioni B, Zaccanti F, Pasquini L, Fantazzini P, Fermani S, Reggi M, Levy O, Fabricius KE, Dubinsky Z, Falini G (2014) Biomineralization control related to population density under ocean acidification. Nat Clim Chang 4:593–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goffredo S, Mancuso A, Caroselli E, Prada F, Dubinsky Z, Falini G, Levy O, Fantazzini P, Pasquini L (2015) Skeletal mechanical properties of Mediterranean corals along a wide latitudinal gradient. Coral Reefs 34:121–132

    Article  Google Scholar 

  • Green DH, Edmunds PJ, Carpenter RC (2008) Increasing relative abundance of Porites astreoides on Caribbean reefs mediated by an overall decline in coral cover. Mar Ecol Prog Ser 359:1–10

    Article  Google Scholar 

  • Grigg RW (1974) Growth rings: annual periodicity in two gorgonian corals. Ecology 55:876–881

    Article  Google Scholar 

  • Grigg RW (1975) Age structure of a longevous coral: a relative index of habitat suitability and stability. Am Nat 109:647–657

    Article  Google Scholar 

  • Guzner B, Novoplansky A, Chadwick NE (2007) Population dynamics of the reef-building coral Acropora hemprichii as an indicator of reef condition. Mar Ecol Prog Ser 333:143–150

    Article  Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic, London

    Google Scholar 

  • Helmle KP, Dodge RE, Swart PK, Gledhill DK, Eakin CM (2011) Growth rates of Florida corals from 1937 to 1996 and their response to climate change. Nat Commun 2:215

    Article  PubMed  CAS  Google Scholar 

  • Highsmith RC (1979) Coral growth rates and environmental control of density banding. J Exp Mar Biol Ecol 37:105–125

    Article  Google Scholar 

  • Hoegh-Guldberg O (2011) The impact of climate change on coral reef ecosystems. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Dordrecht

    Google Scholar 

  • Howe SA, Marshall AT (2002) Temperature effects on calcification rate and skeletal deposition in the temperate coral, Plesiastrea versipora (Lamarck). J Exp Mar Biol Ecol 275:63–81

    Article  CAS  Google Scholar 

  • Hughes RN (1989) A functional biology of clonal animals. Chapman and Hall, New York

    Google Scholar 

  • Hughes TP, Jackson JBC (1980) Do corals lie about their age-some demographic consequences of partial mortality, fission and fusion. Science 209:713–715

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Jackson JBC (1985) Population dynamics and life histories of foliaceous corals. Ecol Monogr 55:141–166

    Article  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Nature 301:929–933

    CAS  Google Scholar 

  • Jiménez C, Hadjioannou L, Petrou A, Nikolaidis A, Evriviadou M, Lange MA (2014) Mortality of the scleractinian coral Cladocora caespitosa during a warming event in the Levantine Sea (Cyprus). Reg Environ Chang. doi:10.1007/s10113-014-0729-2

    Google Scholar 

  • Johnson KG (1992) Population dynamics of a free-living coral: recruitment, growth and survivorship of Manicina areolata (Linnaeus) on the Caribbean coast of Panama. J Exp Mar Biol Ecol 164:171–191

    Article  Google Scholar 

  • Johnson KG, Budd AF, Stemann TA (1995) Extinction selectivity of neogene Caribbean reef corals. Paleobiology 21:52–73

    Article  Google Scholar 

  • Kain JM (1989) The seasons in the subtidal. Br Phycol J 24:203–215

    Article  Google Scholar 

  • Kenter JAM (1989) Applications of computerized tomography in sedimentology. Mar Geotechnol 8:201–211

    Article  Google Scholar 

  • Kersting D-K, Linares C (2012) Cladocora caespitosa bioconstructions in the Columbretes Islands Marine Reserve (Spain, NW Mediterranean): distribution, size structure and growth. Mar Ecol 33:427–436

    Article  Google Scholar 

  • Kersting D-K, Teixido N, Linares C (2014) Recruitment and mortality of the temperate coral Cladocora caespitosa: implications for the recovery of endangered populations. Coral Reefs 33:403–407

    Article  Google Scholar 

  • Kinsey DW, Davies PJ (1979) Carbon turnover, calcification and growth in coral reefs. In: Trudinger PA, Swaine DJ (eds) Biogeochemical cycling of mineral forming elements. Elsevier, Amsterdam

    Google Scholar 

  • Kleypas JA, McManus JW, Menez AB (1999) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159

    Article  Google Scholar 

  • Knittweis L, Jompa J, Richter C, Wolff M (2009) Population dynamics of the mushroom coral Heliofungia actiniformis in the Spermonde Archipelago, South Sulawesi, Indonesia. Coral Reefs 28:793–804

    Article  Google Scholar 

  • Knuston DW, Buddemeier RW, Smith SV (1972) Coral chronometers: seasonal growth bands in reef corals. Science 177:270–272

    Article  Google Scholar 

  • Kružić P, Popijač A (2015) Mass mortality events of the coral Balanophyllia europaea (Scleractinia, Dendrophylliidae) in the Mljet National Park (eastern Adriatic Sea) caused by sea temperature anomalies. Coral Reefs 34:109–118

    Article  Google Scholar 

  • Kružić P, Požar-Domac A (2002) Skeleton growth rates of coral bank of Cladocora caespitosa (Anthozoa, Scleractinia) in Veliko jezero (Mljet National Park). Period Biol 104:123–129

    Google Scholar 

  • Kružić P, Požar-Domac A (2003) Banks of the coral Cladocora caespitosa (Anthozoa, Scleractinia) in the Adriatic Sea. Coral Reefs 22:536

    Article  Google Scholar 

  • Kružić P, Sršen P, Benković L (2012) The impact of seawater temperature on coral growth parameters of the colonial coral Cladocora caespitosa (Anthozoa, Scleractinia) in the eastern Adriatic Sea. Facies 58:477–491

    Article  Google Scholar 

  • Kushmaro A, Loya Y, Fine M, Rosenberg E (1996) Bacterial infection and coral bleaching. Nature 380:396

    Article  CAS  Google Scholar 

  • Lins de Barros MM, Pires DO (2006) Colony size-frequency distributions among different populations of the scleractinian coral Siderastrea stellata in Southwestern Atlantic: implications for life history patterns. Braz J Oceanogr 54:213–223

    Google Scholar 

  • Logan A, Anderson IH (1991) Skeletal extension growth rate assessment in corals, using CT scan imagery. Bull Mar Sci 49:847–850

    Google Scholar 

  • Lough JM, Barnes DJ (2000) Environmental controls on growth of the massive coral Porites. J Exp Mar Biol Ecol 245:225–243

    Article  PubMed  Google Scholar 

  • Loya Y (1976) The red sea coral Stylophora pistillata is an r strategist. Nature 259:478–480

    Article  Google Scholar 

  • Manzello DP (2010) Coral growth with thermal stress and ocean acidification: lessons from the eastern tropical Pacific. Coral Reefs 29:749–758

    Article  Google Scholar 

  • Manzello DP, Enochs IC, Kolodziej G, Carlton R (2015) Recent decade of growth and calcification of Orbicella faveolata in the Florida Keys: an inshore-offshore comparison. Mar Ecol Prog Ser 521:81–89

    Article  Google Scholar 

  • Meesters WH, Hilterman M, Kardinaal E, Keetman M, de Vries M, Bak RPM (2001) Colony size–frequency distributions of scleractinian coral populations: spatial and interspecific variation. Mar Ecol Prog Ser 209:43–54

    Article  Google Scholar 

  • Miller MW (1995) Growth of a temperate coral: effects of temperature, light, depth, and heterotrophy. Mar Ecol Prog Ser 122:217–225

    Article  Google Scholar 

  • Morgan KM, Kench PS (2012) Skeletal extension and calcification of reef-building corals in the central Indian Ocean. Mar Environ Res 81:78–82

    Article  CAS  PubMed  Google Scholar 

  • Muko S, Arakaki S, Tamai R, Sakai K (2014) An individual-based model for population viability analysis of the brooding coral Seriatopora hystrix. Ecol Model 277:68–76

    Article  Google Scholar 

  • Nozawa Y, Tokeshi M, Nojima S (2008) Structure and dynamics of a high-latitude scleractinian coral community in Amakusa, southwestern Japan. Mar Ecol Prog Ser 358:151–160

    Article  Google Scholar 

  • Pauly D (1984) Fish population dynamics in tropical waters: a manual for use with programmable calculators. International Center for Living Aquatic Resources Management, Manila

    Google Scholar 

  • Peirano A, Morri C, Bianchi CN (1999) Skeleton growth and density pattern of the temperate, zooxanthellate scleractinian Cladocora caespitosa from the Ligurian Sea (NW Mediterranean). Mar Ecol Prog Ser 185:195–201

    Article  Google Scholar 

  • Peirano A, Morri C, Bianchi CN, Rodolfo-Metalpa R (2001) Biomass, carbonate standing stock and production of the Mediterranean coral Cladocora caespitosa (L.). Facies 44:75–80

    Article  Google Scholar 

  • Peirano A, Morri C, Bianchi CN, Aguirre J, Antonioli F, Calzetta G, Carobene L, Mastronuzzi G, Orrù P (2004) The Mediterranean coral Cladocora caespitosa: a proxy for past climate fluctuations? Glob Planet Chang 40:195–200

    Article  Google Scholar 

  • Peirano A, Abbate M, Cerrati G, Difesca V, Peroni C, Rodolfo-Metalpa R (2005) Monthly variations in calix growth, polyp tissue, and density banding of the Mediterranean scleractinian Cladocora caespitosa (L.). Coral Reefs 24:404–409

    Article  Google Scholar 

  • Peirano A, Kružić P, Mastronuzzi G (2009) Growth of Mediterranean reef of Cladocora caespitosa (L.) in the late quaternary and climate inferences. Facies 55:325–333

    Article  Google Scholar 

  • Richardson AJ, Poloczanska ES (2008) Under-resourced, under threat. Science 320:1294–1295

    Article  CAS  PubMed  Google Scholar 

  • Rinkevich B (1989) The contribution of photosynthetic products to coral reproduction. Mar Biol 101:259–263

    Article  CAS  Google Scholar 

  • Rinkevich B (1995) Restoration strategies for coral reefs damaged by recreational activities—the use of sexual and asexual recruits. Restor Ecol 3:241–251

    Article  Google Scholar 

  • Rodolfo-Metalpa R, Bianchi CN, Peirano A, Morri C (2000) Coral mortality in NW Mediterranean. Coral Reefs 19:24

    Article  Google Scholar 

  • Rodolfo-Metalpa R, Richard C, Allemand D, Ferrier-Pages C (2006) Growth and photosynthesis of two Mediterranean corals, Cladocora caespitosa and Oculina patagonica, under normal and elevated temperatures. J Exp Biol 209:4546–4556

    Article  PubMed  Google Scholar 

  • Rodolfo-Metalpa R, Martin S, Ferrier-Pages C, Gattuso JP (2010) Response of Mediterranean corals to ocean acidification. Biogeosci Discuss 6:7103–7131

    Article  Google Scholar 

  • Ross MA (1984) A quantitative study of the stony coral fishery in Cebu, Philippines. PSZNI Mar Ecol 5:75–91

    Article  Google Scholar 

  • Roth L, Koksal S, van Woesik R (2010) Effects of thermal stress on key processes driving coral-population dynamics. Mar Ecol Prog Ser 411:73–87

    Article  Google Scholar 

  • Ruppert EE, Fox RS (1988) Seashore animals of the Southeast. University of South Carolina Press, Columbia

    Google Scholar 

  • Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullisster JL, Wanninkhof R, Wong CS, Wallace DW, Tilbrook B, Millero FJ, Peng TH, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371

    Article  CAS  PubMed  Google Scholar 

  • Schiller C (1993a) Ecology of the symbiotic coral Cladocora caespitosa (L.) (Faviidae, Scleractinia) in the bay of Piran (Adriatic Sea): I. Distribution and biometry. PSZNI Mar Ecol 14:205–219

    Article  Google Scholar 

  • Schiller C (1993b) Ecology of the symbiotic coral Cladocora caespitosa (Faviidae, Montastreinae) in the bay of Piran: II. Energy budget. PSZNI Mar Ecol 14:221–238

    Article  Google Scholar 

  • Shenkar N, Fine M, Loya Y (2005) Size matters: bleaching dynamics of the coral Oculina patagonica. Mar Ecol Prog Ser 294:181–188

    Article  Google Scholar 

  • Shi Q, Yu KF, Chen TR, Zhang HL, Zhao MX, Yan HQ (2012) Two centuries-long records of skeletal calcification in massive Porites colonies from Meiji Reef in the southern South China Sea and its responses to atmospheric CO2 and seawater temperature. Sci China Earth Sci 55:1–12

    Article  CAS  Google Scholar 

  • Shuhmacher H, Zibrowius H (1985) What is hermatypic? A redefinition of ecological groups in corals and other organisms. Coral Reefs 4:1–9

    Article  Google Scholar 

  • Silenzi S, Bard E, Montagna P, Antonioli F (2005) Isotopic and elemental records in a non-tropical coral (Cladocora caespitosa): discovery of a new high-resolution climate archive for the Mediterranean Sea. Glob Planet Chang 49:94–120

    Article  Google Scholar 

  • Sparre P, Ursin E, Venema SC (1989) Introduction to tropical fish stock assessment. FAO Fisheries Technical Paper, Rome

    Google Scholar 

  • Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Tanzil JTI, Brown BE, Tudhope AW, Dunne RP (2009) Decline in skeletal growth of the coral Porites lutea from the Andaman Sea, South Thailand between 1984 and 2005. Coral Reefs 28:519–528

    Article  Google Scholar 

  • Tanzil JTI, Brown BE, Dunne RP, Lee JN, Kaandorp JA, Todd PA (2013) Regional decline in growth rates of massive Porites corals in Southeast Asia. Global Chang Biol 19:3011–3023

    Article  Google Scholar 

  • Teixido N, Garrabou J, Harmelin JG (2011) Low dynamics, high longevity and persistence of sessile structural species dwelling on Mediterranean coralligenous outcrops. PLoS One 6:e23744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thresher RE, Adkins J, Thiagarajan N (2011) Modal analysis of the deep-water solitary scleractinian, Desmophyllum dianthus, on SW Pacific seamounts: inferred recruitment periodicity, growth and mortality rates. Coral Reefs 30:1063–1070

    Article  Google Scholar 

  • Vardi T, Williams DE, Sandin SA (2012) Population dynamics of threatened elkhorn coral in the northern Florida Keys, USA. Endanger Species Res 19:157–169

    Article  Google Scholar 

  • Vermeij MJA (2006) Early life-history dynamics of Caribbean coral species on artificial substratum: the importance of competition, growth and variation in life-history strategy. Coral Reefs 25:59–71

    Article  Google Scholar 

  • Vermeij MJA, Sandin SA (2009) Density-dependent settlement and mortality structure the earliest life phases of a coral population. Ecology 89:1994–2004

    Article  Google Scholar 

  • Von Bertalanffy L (1938) A quantitative theory of organic growth (inquiries on growth laws II). Hum Biol 10:181–213

    Google Scholar 

  • Zhao MX, Yu KF, Zhang QM, Shi Q, Roff G (2014) Age structure of massive Porites lutea corals at Luhuitou fringing reef (northern South China Sea) indicates recovery following severe anthropogenic disturbance. Coral Reefs 33:39–44

    Article  Google Scholar 

  • Zibrowius H (1980) Les scléractiniaires de la Méditeranée et de l’Atlantique nord-oriental. Mem Inst Oceanogr (Monaco) 11:1–284

    Google Scholar 

  • Zibrowius H (1982) Taxonomy in ahermatypic scleractinian corals. Palaeontogr Am 54:80–85

    Google Scholar 

Download references

Acknowledgments

This review was written during the implementation of the EU project “CoralWarm–Corals and global warming : the Mediterranean versus the Red Sea ”, funded by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC grant agreement no [249930; www.CoralWarm.eu]

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Goffredo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Caroselli, E., Goffredo, S. (2016). Population Dynamics of Temperate Corals in a Changing Climate. In: Goffredo, S., Dubinsky, Z. (eds) The Cnidaria, Past, Present and Future. Springer, Cham. https://doi.org/10.1007/978-3-319-31305-4_20

Download citation

Publish with us

Policies and ethics