Skip to main content

2D/3D Real-Time Tracking of Surgical Instruments Based on Endoscopic Image Processing

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9515))

Abstract

This paper describes a simple and robust algorithm which permits to track surgical instruments without artificial markers in endoscopic images. Based on image processing, this algorithm can estimate the 2D/3D pose of all the instruments visible in the image, in real-time (30 Hz). The originality of the approach is based on the use of a Frangi filter for detecting edges and the tip of instruments. The accuracy of the instruments’ location in the image is evaluated using an extensive dataset (1500 images, 3 laparoscopic surgeries). Pose estimation of instruments in space is quantitatively evaluated on a test bench through comparison with the ground truth positioning provided by a calibrated robotic instrument holder. This method opens perspectives in the real-time control of surgical robots and the intra-operative recognition of surgical gestures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cano, A.M., Gayá, F., Lamata, P., Sánchez-González, P., Gómez, E.J.: Laparoscopic tool tracking method for augmented reality surgical applications. In: Bello, F., Edwards, E. (eds.) ISBMS 2008. LNCS, vol. 5104, pp. 191–196. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Zhou, J., Payandeh, S.: Visual tracking of laparoscopic instruments. J. Autom. Control Eng. 2(3), 234–241 (2014)

    Article  Google Scholar 

  3. Wolf, R., Duchateau, J., Cinquin, P., Voros, S.: 3D tracking of laparoscopic instruments using statistical and geometric modeling. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part I. LNCS, vol. 6891, pp. 203–210. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Allan, M., Ourselin, S., Thompson, S., Hawkes, D.J., Kelly, J., Stoyanov, D.: Toward detection and localization of instruments in minimally invasive surgery. IEEE Trans. Biomed. Eng. 60(4), 1050–1058 (2013)

    Article  Google Scholar 

  5. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)

    Google Scholar 

  6. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)

    Article  Google Scholar 

  7. Doignon, C., Graebling, P., de Mathelin, M.: Real-time segmentation of surgical instruments inside the abdominal cavity using a joint hue saturation color feature. Real-Time Imaging 11(5), 429–442 (2005)

    Article  Google Scholar 

  8. Otsu, N.: A threshold selection method from gray-level histograms. Automatica 11(285–296), 23–27 (1975)

    Google Scholar 

  9. Felzenszwalb, P., Huttenlocher, D.: Distance transforms of sampled functions. Cornell University. (2004)

    Google Scholar 

  10. Suzuki, S.: Topological structural analysis of digitized binary images by border following. Comput. Vis. Graph. Image Process. 30(1), 32–46 (1985)

    Article  MATH  Google Scholar 

  11. Hough, V., Paul, C.: U.S. Patent No. 3,069,654. U.S. Patent and Trademark Office, Washington (1962)

    Google Scholar 

  12. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  13. Sznitman, R., Becker, C., Fua, P.: Fast part-based classification for instrument detection in minimally invasive surgery. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part II. LNCS, vol. 8674, pp. 692–699. Springer, Heidelberg (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Agustinos .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Agustinos, A., Voros, S. (2016). 2D/3D Real-Time Tracking of Surgical Instruments Based on Endoscopic Image Processing. In: Luo, X., Reichl, T., Reiter, A., Mariottini, GL. (eds) Computer-Assisted and Robotic Endoscopy. CARE 2015. Lecture Notes in Computer Science(), vol 9515. Springer, Cham. https://doi.org/10.1007/978-3-319-29965-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29965-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29964-8

  • Online ISBN: 978-3-319-29965-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics