Skip to main content

Is Active Impedance the Key to a Breakthrough for Legged Robots?

  • Chapter
  • First Online:
Book cover Robotics Research

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 114))

Abstract

This work addresses the question whether active impedance control is key to a breakthrough for legged robots. In this paper, we will talk about controlling the mechanical impedance of joints and legs with a focus on stiffness and damping control. In contrast to passive elements like springs, active impedance is achieved by torque-controlled joints allowing real-time adjustment of stiffness and damping. We argue that legged robots require a high degree of versatility and flexibility to execute a wide range of assistive tasks to be truly useful to humans and thus to lead to a breakthrough. Adjustable stiffness and damping in realtime is a fundamental building block towards versatility. Experiments with our 80 kg hydraulic quadruped robot HyQ demonstrate that active impedance alone (thus no springs in the structure) can successfully emulate passively compliant elements during highly-dynamic locomotion tasks (running and hopping); and, that no springs are needed to protect the actuation system. Here we present results of a flying trot, also referred to as running trot. To the authors’ best knowledge this is the first time a flying trot was successfully implemented on a robot without passive elements such as springs. A critical discussion on the pros and cons of active impedance concludes the paper. An extended version of this paper has been published in IJRR in 2015 [43].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Compliance is the inverse of stiffness.

  2. 2.

    Reduction gears are required to amplify the low output torque of electric motors.

  3. 3.

    Note that we recently increased the hydraulic system pressure of the HyQ robot to 20 MPa, increasing the maximum torque of the hip and knee flexion/extension joints to 181 Nm.

  4. 4.

    Note that the fact that models are required for good performance does not address the question where the model comes from. For robots it can sometimes be derived from CAD data, sometimes must be estimated/learned. For humans models are typically acquired by learning.

  5. 5.

    It is worthwhile discussing these issues in the control theoretic notions of nominal behavior and disturbance reaction.

References

  1. Barasuol, V., De Negri, V.J., De Pieri, E.R.: WCPG: a central pattern generator for legged robots based on workspaceintentions. In: Proceedings of the ASME Dynamic System and Control Conference (DSCC), pages 111–114 (2011)

    Google Scholar 

  2. Barasuol, V., Buchli, J., Semini, C., Frigerio, M., De Pieri, E.R., Caldwell, D.G.: A reactive controller framework for quadrupedal locomotion on challenging terrain. In: IEEE International Conference on Robotics and Automation (ICRA) (2013)

    Google Scholar 

  3. Blickhan, R.: The spring-mass model for running and hopping. Biomechanics 22, 1217–1227 (1989)

    Article  Google Scholar 

  4. Boaventura, T., Semini, C., Buchli, J., Frigerio, M., Focchi, M., Caldwell. D.G.: Dynamic torque control of a hydraulic quadruped robot. In: IEEE International Conference in Robotics and Automation (ICRA), pp. 1889–1894 (2012)

    Google Scholar 

  5. Boaventura, T., Medrano-Cerda, G.A., Semini, C., Buchli, J., Caldwell, D.G.: Stability and performance of the compliance controller of the quadruped robot HYD. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2013)

    Google Scholar 

  6. Bruce, P.G., Freunberger, S.A., Hardwick, L.J., Tarascon, J.-M.: Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012)

    Article  Google Scholar 

  7. Buchli, J., Kalakrishnan, M., Mistry, M., Pastor, P., Schaal, S.: Compliant quadruped locomotion over rough terrain. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 814–820 (2009)

    Google Scholar 

  8. Buehler, M., Battaglia, R., Cocosco, R., Hawker, G., Sarkis, J., Yamazaki, K.: SCOUT: a simple quadruped that walks, climbs, and runs. Int. Conf. Robot. Autom. (ICRA) 2, 1707–1712 (1998)

    Article  Google Scholar 

  9. Burdet, E., Osu, R., Franklin, D., Milner, T., Kawato, M.: The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 414(6862), 446–449 (2001)

    Article  Google Scholar 

  10. Estremera, J., Waldron, K.J.: Thrust control, stabilization and energetics of a quadruped running robot. Int. J. Robot. Res. 27, 1135–1151 (2008)

    Article  Google Scholar 

  11. Focchi, M., Boaventura, T., Semini, C., Frigerio, M., Buchli, J., Caldwell, D.G.: Torque-control based compliant actuation of a quadruped robot. In: Proceedings of the 12th IEEE International Workshop on Advanced Motion Control (AMC) (2012)

    Google Scholar 

  12. Franklin, D., Burdet, E., Osu, R., Kawato, M., Milner, T.: Functional significance of stiffness in adaptation of multijoint arm movements to stable and unstable dynamics. Exp. Brain Res. 151, 145–157 (2003)

    Article  Google Scholar 

  13. Gehring, C., Coros, S., Hutter, M., Blösch, M., Höpflinger, M., Siegwart, R.: Control of dynamic gaits for a quadrupedal robot. In: IEEE International Conference on Robotics and Automation (ICRA) (2013)

    Google Scholar 

  14. Geyer, H., Herr, H.: A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Trans. Neural Syst. Rehabil. Eng. 18(3), 263–273 (2010)

    Article  Google Scholar 

  15. Herzog, A., Righetti, L., Grimminger, F., Pastor, P., Schaal, S.: Momentum-based balance control for torque-controlled humanoids. In: arXiv preprint arXiv:1305.2042 (2013)

  16. Hirzinger, G., Albu-Schäffer, A., Hahnle, M., Schaefer, I., Sporer, N.: On a new generation of torque controlled light-weight robots. In: IEEE International Conference on Robotics and Automation (ICRA), vol. 4, pp. 3356–3363 (2001)

    Google Scholar 

  17. Hogan, N.: Adaptive control of mechanical impedance by coactivation of antagonist muscles. IEEE Trans. Autom. Control 29, 681–690 (1984)

    Article  MATH  Google Scholar 

  18. Hogan, N.: Impedance control: An approach to manipulation: Part I - Theory. ASME J. Dyn. Syst. Meas. Control 107, 1–7 (1985)

    Article  MATH  Google Scholar 

  19. Hogan, N.: Impedance control: An approach to manipulation: Part II - Implementation. ASME J. Dyn. Syst. Meas. Control 107, 8–16 (1985)

    Article  MATH  Google Scholar 

  20. Hutter, M., Gehring, C., Blösch, M., Höpflinger, M., Remy, C.D., Siegwart, R.: Starleth: A compliant quadrupedal robot for fast, efficient, and versatile locomotion. In: International Conference on Climbing and Walking Robots (CLAWAR) (2012)

    Google Scholar 

  21. Hyon, S., Hale, J., Cheng, G.: Full-body compliant human-humanoid interaction: Balancing in the presence of unknown external forces. IEEE Trans. Robot. 23(5), 884–898 (2007)

    Article  Google Scholar 

  22. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21(4), 642–653 (2008)

    Article  Google Scholar 

  23. Kandel, E., Schwartz, J., Jessell, T.: Principles of Neural Science, 4th edn, McGraw-Hill Medical, (2000)

    Google Scholar 

  24. Khatib, O.: A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE J. Robot. Autom. 3(1), 43–53 (1987)

    Article  Google Scholar 

  25. Online Video: HyQ Robot: Flying Trot with Active Compliance: http://www.iit.it/hyq or http://www.youtube.com/watch?v=27lxHMp9LIA

  26. Ott, C., Eiberger, O., Englsberger, J., Roa, M.A., Albu-Schäffer, A.: Hardware and control concept for an experimental bipedal robot with joint torque sensors. J. Robot. Soc. Jpn. 30(4), 378–382 (2012)

    Google Scholar 

  27. Pratt, G., Williamson, M.: Series elastic actuators. In: IEEE International Conference on Intelligent Robots and Systems (IROS) (1995)

    Google Scholar 

  28. Pratt, J., Chew, C., Torres, A., Dilworth, P., Pratt, G.: Virtual model control: An intuitive approach for bipedal locomotion. Int. J. Robot. Res 20(2), 129–143 (2001)

    Google Scholar 

  29. Raibert, M.H.: Legged Robots That Balance. The MIT Press, Cambridge (1986)

    Google Scholar 

  30. Raibert, M., Blankespoor, K., Nelson, G., Playter, R., the BigDog Team,: Bigdog, the rough-terrain quadruped robot. In: Proceedings of the 17th World Congress The International Federation of Automatic Control (IFAC) (2008)

    Google Scholar 

  31. Selen, L., Franklin, D., Wolpert, D.: Impedance control reduces instability that arises from motor noise. J Neurosci 29(40), 12606–16 (2009)

    Article  Google Scholar 

  32. Semini, C.: HyQ—Design and Development of a Hydraulically Actuated Quadruped Robot. Ph.D thesis, Istituto Italiano di Tecnologia (IIT) (2010)

    Google Scholar 

  33. Semini, C., Tsagarakis, N.G., Guglielmino, E., Focchi, M., Cannella, F., Caldwell, D.G.: Design of HyQ—a hydraulically and electrically actuated quadruped robot. J. Syst. Control Eng. 225(6), 831–849 (2011)

    Google Scholar 

  34. Seok, S., Wang, A., Otten, D., Kim, S.: Actuator design for high force proprioceptive control in fast legged locomotion. In: IEEE/RSJ Intelligent Robots and Systems (IROS), pp. 1970–1975 (2012)

    Google Scholar 

  35. Seok, S., Wang, A., Chuah, M.Y.M., Otten, D., Lang, J., Kim, S.: Design principles for highly efficient quadrupeds and implementation on the mit cheetah robot. In: IEEE International Conference on Robotics and Automation (ICRA) (2013)

    Google Scholar 

  36. Shadmer, R., Arbib, M.: A mathematical analysis of the force-stiffness characteristics of muscles in control of a single joint system. Biol. Cybern. 66, 463–477 (1992)

    Article  MATH  Google Scholar 

  37. Spröwitz, A., Tuleu, A., Vespignani, M., Ajallooeian, M., Badri, E., Ijspeert, A.: Towards dynamic trot gait locomotion-design, control and experiments with Cheetah-cub, a compliant quadruped robot. Int. J. Robot. Res 32(8), 933–951 (2013)

    Google Scholar 

  38. Sreenath, K., Park, H.W., Grizzle, J.W.: Design and experimental implementation of a compliant hybrid zero dynamics controller with active force control for running on mabel. In: IEEE International Conference in Robotics and Automation (ICRA) (2012)

    Google Scholar 

  39. Stephens, B., Atkeson, C.: Modeling and control of periodic humanoid balance using the linear biped model. In: IEEE-RAS International Conference on Humanoid Robots (Humanoids) (2010)

    Google Scholar 

  40. Tee, K., Franklin, D., Kawato, M., Milner, T., Burdet, E.: Concurrent adaptation of force and impedance in the redundant muscle system. Biol. Cybern. 120(1), 31–44 (2009)

    MATH  Google Scholar 

  41. Tsagarakis, N., Sardellitti, I., Caldwell, D.: A new variable stiffness actuator (compact-vsa): Design and modelling. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 378–383 (2011)

    Google Scholar 

  42. Vanderborght, B. et al.: Variable impedance actuators: a review. Robotics and Autonomous Systems (2013)

    Google Scholar 

  43. Semini, C., Barasuol, V., Boaventura, T., Frigerio, M., Focchi, M., Caldwell, D.G., Buchli, J.: Towards versatile legged robots through active impedance control. Int. J. Robot. Res 34(7), 1003–1020 (2015)

    Google Scholar 

Download references

Acknowledgments

This research has been funded by the Fondazione Istituto Italiano di Tecnologia. The authors would like to thank CAPES for the scholarship granted to V. Barasuol (Grant Procs. 6463-11-8). T. Boaventura is partially funded through the EU Project BALANCE (Grant 601003 of the EU FP7 program). J. Buchli is supported by a Swiss National Science Foundation professorship. The authors would like to thank also the other members of the Dynamic Legged Systems Lab that contributed to the success of this project: M. Focchi, I. Havoutis, S. Bazeille, J. Goldsmith, H. Khan, B.Rehman, and our team of technicians.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Semini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Semini, C., Barasuol, V., Boaventura, T., Frigerio, M., Buchli, J. (2016). Is Active Impedance the Key to a Breakthrough for Legged Robots?. In: Inaba, M., Corke, P. (eds) Robotics Research. Springer Tracts in Advanced Robotics, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-319-28872-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28872-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28870-3

  • Online ISBN: 978-3-319-28872-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics