Skip to main content

Computing Information Integration in Brain Networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9564))

Abstract

How much information do large brain networks integrate as a whole over the sum of their parts? Can the complexity of such networks be quantified in an information-theoretic way and be meaningfully coupled to brain function? Recently, measures of dynamical complexity such as integrated information have been proposed. However, problems related to the normalization and Bell number of partitions associated to these measures make these approaches computationally infeasible for large-scale brain networks. Our goal in this work is to address this problem. Our formulation of network integrated information is based on the Kullback-Leibler divergence between the multivariate distribution on the set of network states versus the corresponding factorized distribution over its parts. We find that implementing the maximum information partition optimizes computations. These methods are well-suited for large networks with linear stochastic dynamics. As an application to brain networks, we compute the integrated information for the human brain’s connectomic data. Compared to a randomly re-wired network, we find that the specific topology of the brain generates greater information complexity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For the case of asymmetric weights, the entries of the covariance matrix cannot be explicitly expressed as a matrix equation. However, they may still be solved by Jordan decomposition of both sides of the Lyapunov equation.

References

  1. Arsiwalla, X.D., Betella, A., Martínez, E., Omedas, P., Zucca, R., Verschure, P.: The dynamic connectome: a tool for large scale 3D reconstruction of brain activity in real time. In: Rekdalsbakken, W., Bye, R., Zhang, H., (eds.) 27th European Conference on Modeling and Simulation, ECMS, Alesund, Norway (2013)

    Google Scholar 

  2. Arsiwalla, X.D.: Entropy functions with 5D chern-simons terms. J. High Energy Phys. 2009(09), 059 (2009)

    Article  MathSciNet  Google Scholar 

  3. Arsiwalla, X.D., Dalmazzo, D., Zucca, R., Betella, A., Brandi, S., Martinez, E., Omedas, P., Verschure, P.: Connectomics to semantomics: Addressing the brain’s big data challenge. Procedia Comput. Sci. 53, 48–55 (2015)

    Article  Google Scholar 

  4. Arsiwalla, X.D., Verschure, P.F.: Integrated information for large complex networks. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE (2013)

    Google Scholar 

  5. Arsiwalla, X.D., Zucca, R., Betella, A., Martinez, E., Dalmazzo, D., Omedas, P., Deco, G., Verschure, P.: Network dynamics with brainx3: A large-scale simulation of the human brain network with real-time interaction. Front. Neuroinformatics 9(2) (2015). http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2015.00002/abstract

  6. Balduzzi, D., Tononi, G.: Integrated information in discrete dynamical systems: motivation and theoretical framework. PLoS Comput. Biol. 4(6), e1000091 (2008)

    Article  Google Scholar 

  7. Barrett, A.B., Barnett, L., Seth, A.K.: Multivariate granger causality and generalized variance. Phys. Rev. E 81(4), 041907 (2010)

    Article  MathSciNet  Google Scholar 

  8. Barrett, A.B., Seth, A.K.: Practical measures of integrated information for time-series data. PLoS Comput. Biol. 7(1), e1001052 (2011)

    Article  MathSciNet  Google Scholar 

  9. Betella, A., Bueno, E.M., Kongsantad, W., Zucca, R., Arsiwalla, X.D., Omedas, P., Verschure, P.F.: Understanding large network datasets through embodied interaction in virtual reality. In: Proceedings of the 2014 Virtual Reality International Conference, p. 23. ACM (2014)

    Google Scholar 

  10. Betella, A., Cetnarski, R., Zucca, R., Arsiwalla, X.D., Martinez, E., Omedas, P., Mura, A., Verschure, P.F.M.J.: BrainX3: embodied exploration of neural data. In: Virtual Reality International Conference (VRIC 2014), Laval, France (2014)

    Google Scholar 

  11. Betella, A., Martínez, E., Zucca, R., Arsiwalla, X.D., Omedas, P., Wierenga, S., Mura, A., Wagner, J., Lingenfelser, F., André, E., et al.: Advanced interfaces to stem the data deluge in mixed reality: placing human (un) consciousness in the loop. In: ACM SIGGRAPH 2013 Posters, p. 68. ACM (2013)

    Google Scholar 

  12. Galán, R.F., et al.: On how network architecture determines the dominant patterns of spontaneous neural activity. PLoS One 3(5), e2148 (2008)

    Article  Google Scholar 

  13. Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., Sporns, O.: Mapping the structural core of human cerebral cortex. PLoS Biol. 6(7), 15(2008). http://www.ncbi.nlm.nih.gov/pubmed/18597554

    Google Scholar 

  14. Honey, C., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J.P., Meuli, R., Hagmann, P.: Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. 106(6), 2035–2040 (2009)

    Article  Google Scholar 

  15. Oizumi, M., Albantakis, L., Tononi, G.: From the phenomenology to the mechanisms of consciousness: integrated information theory 3.0. PLoS Comput. Biol. 10(5), e1003588 (2014)

    Article  Google Scholar 

  16. Omedas, P., Betella, A., Zucca, R., Arsiwalla, X.D., Pacheco, D., Wagner, J., Lingenfelser, F., Andre, E., Mazzei, D., Lanatá, A., Tognetti, A., de Rossi, D., Grau, A., Goldhoorn, A., Guerra, E., Alquezar, R., Sanfeliu, A., Verschure, P.F.M.J.: XIM-engine: a software framework to support the development of interactive applications that uses conscious and unconscious reactions in immersive mixed reality. In: Proceedings of the 2014 Virtual Reality International Conference, VRIC 2014, pp. 26:1–26:4. ACM (2014). http://doi.acm.org/10.1145/2617841.2620714

  17. Tononi, G.: An information integration theory of consciousness. BMC Neurosci. 5(1), 42 (2004)

    Article  Google Scholar 

  18. Tononi, G., Sporns, O.: Measuring information integration. BMC Neurosci. 4(1), 31 (2003)

    Article  Google Scholar 

  19. Tononi, G., Sporns, O., Edelman, G.M.: A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Nat. Acad. Sci. 91(11), 5033–5037 (1994)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the European Research Council’s CDAC project: “The Role of Consciousness in Adaptive Behavior: A Combined Empirical, Computational and Robot based Approach” (ERC-2013- ADG 341196).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xerxes D. Arsiwalla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Arsiwalla, X.D., Verschure, P. (2016). Computing Information Integration in Brain Networks. In: Wierzbicki, A., Brandes, U., Schweitzer, F., Pedreschi, D. (eds) Advances in Network Science. NetSci-X 2016. Lecture Notes in Computer Science(), vol 9564. Springer, Cham. https://doi.org/10.1007/978-3-319-28361-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28361-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28360-9

  • Online ISBN: 978-3-319-28361-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics