Skip to main content

Investigating Multi-Operator Differential Evolution for Feature Selection

  • Conference paper
  • First Online:
Book cover Artificial Life and Computational Intelligence (ACALCI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9592))

  • 1239 Accesses

Abstract

Performance issues when dealing with a large number of features are well-known for classification algorithms. Feature selection aims at mitigating these issues by reducing the number of features in the data. Hence, in this paper, a feature selection approach based on a multi-operator differential evolution algorithm is proposed. The algorithm partitions the initial population into a number of sub-populations evolving using a pool of distinct mutation strategies. Periodically, the sub-populations exchange information to enhance their diversity. This multi-operator approach reduces the sensitivity of the standard differential evolution to the selection of an appropriate mutation strategy. Two classifiers, namely decision trees and k-nearest neighborhood, are used to evaluate the generated subsets of features. Experimental analysis has been conducted on several real data sets using a 10-fold cross validation. The analysis shows that the proposed algorithm successfully determines efficient feature subsets, which can improve the classification accuracy of the classifiers under consideration. The usefulness of the proposed method on large scale data set has been demonstrated using the KDD Cup 1999 intrusion data set, where the proposed method can effectively remove irrelevant features from the data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bazi, Y., Melgani, F.: Toward an optimal SVM classification system for hyperspectral remote sensing images. IEEE Trans. Geosci. Remote Sens. 44(11), 3374–3385 (2006). 00252

    Article  Google Scholar 

  2. Caruana, R., Freitag, D.: Greedy Attribute Selection, pp. 28–36. Citeseer (1994). 00536

    Google Scholar 

  3. Debie, E., Shafi, K., Lokan, C., Merrick, K.: Performance analysis of rough set ensemble of learning classifier systems with differential evolution based rule discovery. Evol. Intell. 6(2), 109–126 (2013). 00001

    Article  Google Scholar 

  4. Elsayed, S.M., Sarker, R.A., Essam, D.L.: Multi-operator based evolutionary algorithms for solving constrained optimization problems. Comput. Oper. Res. 38(12), 1877–1896 (2011). http://www.sciencedirect.com/science/article/pii/S030505481100075X.00072

    Article  MathSciNet  MATH  Google Scholar 

  5. Frank, A., Asuncion, A.: UCI Machine Learning Repository. University of California, Irvine, School of Information and Computer Sciences (2010). http://archive.ics.uci.edu/ml

  6. Gadat, S., Younes, L.: A stochastic algorithm for feature selection in pattern recognition. J. Mach. Learn. Res. 8, 509–547 (2007)

    MATH  Google Scholar 

  7. Garcia-Nieto, J., Alba, E., Apolloni, J.: Hybrid DE-SVM approach for feature selection: application to gene expression datasets, pp. 1–6. IEEE (2009)

    Google Scholar 

  8. Hall, M.A.: Correlation-based Feature Selection for Machine Learning. Ph.D. thesis (1999)

    Google Scholar 

  9. John, G.H., Kohavi, R., Pfleger, K.: Irrelevant Features and the Subset Selection Problem. In: Proceedings, pp. 121–129. Morgan Kaufmann (1994)

    Google Scholar 

  10. Khushaba, R.N., Al-Ani, A., Al-Jumaily, A.: Feature subset selection using differential evolution and a statistical repair mechanism. Expert Syst. Appl. 38(9), 11515–11526 (2011). http://linkinghub.elsevier.com/retrieve/pii/S0957417411004362

    Article  Google Scholar 

  11. Kononenko, I.: Estimating attributes: analysis and extensions of RELIEF. In: Bergadano, F., De Raedt, L. (eds.) ECML-94. LNCS, vol. 784, pp. 171–182. Springer, Heidelberg (1994). http://dx.doi.org/10.1007/3-540-57868-4_57

    Chapter  Google Scholar 

  12. Maimon, O., Rokach, L.: Improving supervised learning by feature decomposition. In: Eiter, T., Schewe, K.-D. (eds.) FoIKS 2002. LNCS, vol. 2284, pp. 178–196. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl. Soft Comput. 11(2), 1679–1696 (2011)

    Article  Google Scholar 

  14. Martinoyić, G., Bajer, D., Zorić, B.: A differential evolution approach to dimensionality reduction for classification needs. Int. J. Appl. Math. Comput. Sci. 24(1), 111 (2014). http://www.degruyter.com/view/j/amcs.2014.24.issue-1/amcs-2014-0009/amcs-2014-0009.xml

    MathSciNet  Google Scholar 

  15. Oh, I.S., Lee, J.S., Moon, B.R.: Hybrid genetic algorithms for feature selection. IEEE Trans. Pattern Anal. Mach. Intell. 26(11), 1424–1437 (2004)

    Article  Google Scholar 

  16. Price, K., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach to Global Optimization. Springer, New York (2005)

    Google Scholar 

  17. Raymer, M.L., Punch, W.F., Goodman, E.D., Kuhn, L., Jain, A.K.: Dimensionality reduction using genetic algorithms. IEEE Trans. Evol. Comput. 4(2), 164–171 (2000)

    Article  Google Scholar 

  18. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997). 09676

    Article  MathSciNet  MATH  Google Scholar 

  19. Tasoulis, D.K., Plagianakos, V.P., Vrahatis, M.N.: Differential evolution algorithms for finding predictive gene subsets in microarray data. In: Maglogiannis, I., Karpouzis, K., Bramer, M. (eds.) AIAI. IFIP, vol. 204, pp. 484–491. Springer, New York (2006)

    Chapter  Google Scholar 

  20. Tušar, T., Filipič, B.: Differential evolution versus genetic algorithms in multiobjective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 257–271. Springer, Heidelberg (2007). http://dx.doi.org/10.1007/978-3-540-70928-2_22

    Chapter  Google Scholar 

  21. Yu, L., Liu, H.: Feature selection for high-dimensional data: a fast correlation-based filter solution, pp. 856–863 (2003). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.68.2975

Download references

Acknowledgement

This work was supported by the Australian Centre for Cyber Security Research Funding Program, under a grant no. PS38135.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Essam Debie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Debie, E., Elsayed, S.M., Essam, D.L., Sarker, R.A. (2016). Investigating Multi-Operator Differential Evolution for Feature Selection. In: Ray, T., Sarker, R., Li, X. (eds) Artificial Life and Computational Intelligence. ACALCI 2016. Lecture Notes in Computer Science(), vol 9592. Springer, Cham. https://doi.org/10.1007/978-3-319-28270-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28270-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28269-5

  • Online ISBN: 978-3-319-28270-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics