Skip to main content

Description of Bose-Einstein Condensates in \(\mathcal {PT}\)-Symmetric Double Wells

  • Conference paper
  • First Online:
Book cover Selforganization in Complex Systems: The Past, Present, and Future of Synergetics

Abstract

The Gross-Pitaevskii equation for a Bose-Einstein condensate in a \(\mathcal {PT}\)-symmetric double-well potential is investigated theoretically. An in- and outcoupling of atoms is modelled by an antisymmetric imaginary potential rendering the Hamiltonian non-Hermitian. Stationary states with real energies and \(\mathcal {PT}\)-symmetric wave functions are found, which proves that Bose-Einstein condensates are a good candidate for a first experimental verification of a \(\mathcal {PT}\)-symmetric quantum system. Time-resolved calculations demonstrate typical effects only observable in \(\mathcal {PT}\)-symmetric potentials, viz. an oscillation of the condensate’s probability density between these wells with an oscillation frequency critically depending on the strength of the in- and outcoupling. \(\mathcal {PT}\)-broken eigenstates with complex energy eigenvalues are also solutions of the time-independent Gross-Pitaevskii equation but are not true stationary states of its time-dependent counterpart. The comparison of a one-dimensional and a three-dimensional calculation shows that it is possible to extract highly precise quantitative results for a fully three-dimensional physical setup from a simple one-dimensional description.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guo, A., Salamo, G.J., Duchesne, D., Morandotti, R., Volatier-Ravat, M., Aimez, V., Siviloglou, G.A., Christodoulides, D.N.: Observation of \({\cal PT}\)-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009)

    Article  Google Scholar 

  2. Rüter, C.E., Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Segev, M., Kip, D.: Observation of parity-time symmetry in optics. Nat. Phys. 6, 192 (2010)

    Article  Google Scholar 

  3. Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having \({\cal PT}\) symmetry. Phys. Rev. Lett. 80, 5243 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Jakubský, V., Znojil, M.: An explicitly solvable model of the spontaneous \({\cal PT}\)-symmetry breaking. Czech. J. Phys. 55, 1113–1116 (2005)

    Article  MathSciNet  Google Scholar 

  5. Ruschhaupt, A., Delgado, F., Muga, J.G.: Physical realization of \({\cal PT}\)-symmetric potential scattering in a planar slab waveguide. J. Phys. A 38, L171 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Mostafazadeh, A.: Delta-function potential with a complex coupling. J. Phys. A 39, 13495 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Musslimani, Z., Makris, K.G., El-Ganainy, R., Christodoulides, D.N.: Optical solitons in \({\cal PT}\) periodic potentials. Phys. Rev. Lett. 100, 30402 (2008)

    Article  MATH  Google Scholar 

  8. Musslimani, Z.H., Makris, K.G., El-Ganainy, R., Christodoulides, D.N.: Analytical solutions to a class of nonlinear Schrödinger equations with \({\cal PT}\)-like potentials. J. Phys. A 41, 244019 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Klaiman, S., Günther, U., Moiseyev, N.: Visualization of branch points in \({\cal PT}\)-symmetric waveguides. Phys. Rev. Lett. 101, 080402 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Graefe, E.M., Günther, U., Korsch, H.J., Niederle, A.E.: A non-Hermitian \({\cal PT}\) symmetric Bose-Hubbard model: eigenvalue rings from unfolding higher-order exceptional points. J. Phys. A 41, 255206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Graefe, E.M., Korsch, H.J., Niederle, A.E.: Mean-field dynamics of a non-Hermitian Bose-Hubbard dimer. Phys. Rev. Lett. 101, 150408 (2008)

    Article  Google Scholar 

  12. Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Musslimani, Z.H.: Beam dynamics in \({\cal PT}\) symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008)

    Article  Google Scholar 

  13. Jones, H.F.: Interface between Hermitian and non-Hermitian Hamiltonians in a model calculation. Phys. Rev. D 78, 065032 (2008)

    Article  Google Scholar 

  14. Mostafazadeh, A., Mehri-Dehnavi, H.: Spectral singularities, biorthonormal systems and a two-parameter family of complex point interactions. J. Phys. A 42, 125303 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ramezani, H., Kottos, T., El-Ganainy, R., Christodoulides, D.N.: Unidirectional nonlinear \({\cal PT}\)-symmetric optical structures. Phys. Rev. A 82, 043803 (2010)

    Article  Google Scholar 

  16. Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Musslimani, Z.H.: \({\cal PT}\)-symmetric optical lattices. Phys. Rev. A 81, 063807 (2010)

    Article  MATH  Google Scholar 

  17. Mehri-Dehnavi, H., Mostafazadeh, A., Batal, A.: Application of pseudo-Hermitian quantum mechanics to a complex scattering potential with point interactions. J. Phys. A 43, 145301 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Moiseyev, N.: Non-Hermitian Quantum Mechanics. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  19. El-Ganainy, R., Makris, K.G., Christodoulides, D.N., Musslimani, Z.H.: Theory of coupled optical \({\cal PT}\)-symmetric structures. Opt. Lett. 32, 2632 (2007)

    Article  MATH  Google Scholar 

  20. Gross, E.P.: Structure of a quantized vortex in Boson systems. Nuovo Cimento 20, 454 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pitaevskii, L.P.: Vortex lines in an imperfect Bose gas. Sov. Phys. JETP 13, 451 (1961)

    MathSciNet  Google Scholar 

  22. Graefe, E.M., Korsch, H.J., Niederle, A.E.: Quantum-classical correspondence for a non-Hermitian Bose-Hubbard dimer. Phys. Rev. A 82, 013629 (2010)

    Article  Google Scholar 

  23. Cartarius, H., Wunner, G.: Model of a \({\cal PT}\)-symmetric Bose-Einstein condensate in a \(\delta \)-function double-well potential. Phys. Rev. A 86, 013612 (2012)

    Article  Google Scholar 

  24. Cartarius, H., Haag, D., Dast, D., Wunner, G.: Nonlinear Schrödinger equation for a \({\cal PT}\)-symmetric delta-function double well. Journal of Physics A 45, 444008 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dast, D., Haag, D., Cartarius, H., Wunner, G., Eichler, R., Main, J.: A Bose-Einstein condensate in a \({\cal PT}\) symmetric double well. Fortschritte der Physik 61, 124–139 (2013)

    Article  MATH  Google Scholar 

  26. Shin, Y., Jo, G.B., Saba, M., Pasquini, T.A., Ketterle, W., Pritchard, D.E.: Optical weak link between two spatially separated Bose-Einstein condensates. Phys. Rev. Lett. 95, 170402 (2005)

    Article  Google Scholar 

  27. Gati, R., Albiez, M., Fölling, J., Hemmerling, B., Oberthaler, M.: Realization of a single Josephson junction for Bose-Einstein condensates. Appl. Phys. B 82, 207 (2006)

    Article  Google Scholar 

  28. Heller, E.J.: Classical S-matrix limit of wave packet dynamics. J. Chem. Phys. 65, 4979 (1976)

    Article  Google Scholar 

  29. Heller, E.J.: Frozen Gaussians: A very simple semiclassical approximation. J. Chem. Phys. 75, 2923 (1981)

    Article  MathSciNet  Google Scholar 

  30. McLachlan, A.D.: A variational solution of the time-dependent Schrödinger equation. Mol. Phys. 8, 39 (1964)

    Article  Google Scholar 

  31. Rau, S., Main, J., Köberle, P., Wunner, G.: Pitchfork bifurcations in blood-cell-shaped dipolar Bose-Einstein condensates. Phys. Rev. A 81, 031605(R) (2010)

    Article  Google Scholar 

  32. Rau, S., Main, J., Wunner, G.: Variational methods with coupled Gaussian functions for Bose-Einstein condensates with long-range interactions. I. General Concept. Phys. Rev. A 82, 023610 (2010)

    Article  Google Scholar 

  33. Rau, S., Main, J., Cartarius, H., Köberle, P., Wunner, G.: Variational methods with coupled Gaussian functions for Bose-Einstein condensates with long-range interactions. II. Applications. Phys. Rev. A 82, 023611 (2010)

    Google Scholar 

  34. Graefe, E.M.: Stationary states of a \({\cal PT}\) symmetric two-mode Bose-Einstein condensate. J. Phys. A 45, 444015 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Cartarius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Dast, D., Haag, D., Cartarius, H., Wunner, G., Eichler, R., Main, J. (2016). Description of Bose-Einstein Condensates in \(\mathcal {PT}\)-Symmetric Double Wells. In: Wunner, G., Pelster, A. (eds) Selforganization in Complex Systems: The Past, Present, and Future of Synergetics. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-27635-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27635-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27633-5

  • Online ISBN: 978-3-319-27635-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics