Skip to main content

The Influence of Electrostatic Lenses on Wave Packet Dynamics

  • Conference paper
  • First Online:
Large-Scale Scientific Computing (LSSC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9374))

Included in the following conference series:

  • 699 Accesses

Abstract

The control of coherent electrons is becoming relevant in emerging devices as (semi-)ballistic transport is observed within nanometer semiconductor structures at room temperature. The evolution of a wave packet – representing an electron in a semiconductor – can be manipulated using specially shaped potential profiles with convex or concave features, similar to refractive lenses used in optics. Such electrostatic lenses offer the possibility, for instance, to concentrate a single wave packet which has been invoked by a laser pulse, or split it up into several wave packets. Moreover, the shape of the potential profile can be dynamically changed by an externally applied potential, depending on the desired behaviour. The evolution of a wave packet under the influence of a two-dimensional potential – the electrostatic lens – is investigated by computing the physical densities using the Wigner function. The latter is obtained by using the signed-particle Wigner Monte Carlo method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spector, J., Stormer, H.L., Baldwin, K.W., Pfeiffer, L.N., West, K.W.: Electron focusing in two-dimensional systems by means of an electrostatic lens. Appl. Phys. Lett. 56(13), 1290–1292 (1990)

    Article  Google Scholar 

  2. Sivan, U., Heiblum, M., Umbach, C.P., Shtrikman, H.: Electrostatic electron lens in the ballistic regime. Phys. Rev. B 41, 7937–7940 (1990)

    Article  Google Scholar 

  3. Wang, R., Liu, H., Huang, R., Zhuge, J., Zhang, L., Kim, D.W., Zhang, X., Park, D., Wang, Y.: Experimental investigations on carrier transport in Si nanowire transistors: ballistic efficiency and apparent mobility. IEEE Trans. Electron Devices 55(11), 2960–2967 (2008)

    Article  Google Scholar 

  4. Williams, J.R., Low, T., Lundstrom, M.S., Marcus, C.M.: Gate-controlled guiding of electrons in graphene. Nat. Nanotechnol. 6(4), 222–225 (2011)

    Article  Google Scholar 

  5. Muraguchi, M., Endoh, T.: Size dependence of electrostatic lens effect in vertical MOSFETs. Jpn. J. Appl. Phys. 53(4S), 04EJ09 (2014)

    Google Scholar 

  6. LeRoy, B.J.: Imaging coherent electron flow. J. Phys. Condens. Matter 15(50), R1835 (2003)

    Article  Google Scholar 

  7. Sellier, H., Hackens, B., Pala, M.G., Martins, F., Baltazar, S., Wallart, X., Desplanque, L., Bayot, V., Huant, S.: On the imaging of electron transport in semiconductor quantum structures by scanning-gate microscopy: successes and limitations. Semicond. Sci. Technol. 26(6), 064008 (2011)

    Article  Google Scholar 

  8. Loth, S., Burgess, J.A.J., Yan, S.: Scanning probe microscopy: close-up on spin coherence. Nat. Nanotechnol. 9(8), 574–575 (2014)

    Article  Google Scholar 

  9. Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)

    Article  Google Scholar 

  10. Leibfried, D., Pfau, T., Monroe, C.: Shadows and mirrors: reconstructing quantum states of atom motion. Phys. Today 51(4), 22–28 (1998). Print edition

    Article  Google Scholar 

  11. Ellinghaus, P., Nedjalkov, M., Selberherr, S.: Implications of the coherence length on the discrete Wigner potential. In: 2014 International Workshop on Computational Electronics (IWCE), pp. 1–3 (2014)

    Google Scholar 

  12. Nedjalkov, M., Vasileska, D.: Semi-discrete 2D Wigner-particle approach. J. Comput. Electron. 7(3), 222–225 (2008)

    Article  Google Scholar 

  13. Nedjalkov, M., Schwaha, P., Selberherr, S., Sellier, J.M., Vasileska, D.: Wigner quasi-particle attributes - an asymptotic perspective. Appl. Phys. Lett. 102(16), 163113 (2013)

    Article  Google Scholar 

  14. Sellier, J.M., Nedjalkov, M., Dimov, I., Selberherr, S.: The role of annihilation in a Wigner Monte Carlo approach. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2013. LNCS, vol. 8353, pp. 186–194. Springer, Heidelberg (2014)

    Google Scholar 

Download references

Acknowledgement

This work was partially supported by the Bulgarian NSF under the grant DFNI 02/20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Ellinghaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ellinghaus, P., Nedjalkov, M., Selberherr, S. (2015). The Influence of Electrostatic Lenses on Wave Packet Dynamics. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2015. Lecture Notes in Computer Science(), vol 9374. Springer, Cham. https://doi.org/10.1007/978-3-319-26520-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26520-9_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26519-3

  • Online ISBN: 978-3-319-26520-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics