Skip to main content

Towards the Disruption of Plans

  • Conference paper
  • First Online:
Coordination, Organizations, Institutions, and Norms in Agent Systems X (COIN 2014)

Abstract

In order for an agent or a group of agents (such as a team) to achieve a goal, a sequence of actions have to be performed. These actions bring about state transitions that constitute a plan. Multiple ways of achieving the goal may exist. In some situations, one may want to prevent or delay an agent or group of agents from achieving a goal. We argue that plans can be disrupted by preventing particular state transitions from happening. We propose four algorithms to identify which state transitions should be thwarted such that the achievement of the goal is prevented (total disruption) or delayed (partial disruption). In order to evaluate the performance of our algorithms we define disruption (partial and total) and also provide metrics for its measurement. We do acknowledge that the disruptor may not always have an accurate representation of the disruptee’s plans. Thus, we perform an experimental analysis to examine the performance of the algorithms when some of the state transitions available to the disruptee are unknown to the disruptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.trespass-project.eu/.

References

  1. Grosz, B.J., Hunsberger, L., Kraus, S.: Planning and acting together. AI Mag. 20(4), 23–34 (1999)

    Google Scholar 

  2. Georgeff, M.P., Lansky, A.L.: Reactive reasoning and planning. In: Proceedings of the 6th National Conference on Artificial Intelligence, pp. 677–682 (1987)

    Google Scholar 

  3. d’Inverno, M., Kinny, D., Luck, M., Wooldridge, M.: A formal specification of dMARS. In: Rao, A., Singh, M.P., Wooldridge, M.J. (eds.) ATAL 1997. LNCS, vol. 1365, pp. 155–176. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Voinitchi, A., Black, E., Luck, M.: Introduction to team disruption mechanisms. In: Proceedings of the 2012 Imperial College Computing Student Workshop, pp. 149–155 (2012)

    Google Scholar 

  5. McDermott, D.: Robot planning. AI Mag. 13(2), 55–79 (1992)

    MathSciNet  Google Scholar 

  6. Hanks, S., McDermott, D.: Modeling a dynamic and uncertain world: symbolic and probabilistic reasoning about change. Artif. Intell. 66(1), 1–55 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Porteous, J., Sebastia, L.: Extracting and ordering landmarks for planning. J. Artif. Intell. Res. 22(1), 215–278 (2004)

    MATH  MathSciNet  Google Scholar 

  8. Schneier, B.: Attack trees: modeling security threats. Dr. Dobbs J. Softw. Tools 24(12), 21–29 (1999)

    Google Scholar 

  9. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Foundations of attack–defense trees. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561, pp. 80–95. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Kordy, B., Kordy, P., Mauw, S., Schweitzer, P.: ADTool: security analysis with attack–defense trees. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 173–176. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Kordy, B., Mauw, S., Schweitzer, P.: Quantitative questions on attack–defense trees. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 49–64. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. TRESsPASS: The tresspass project (2015)

    Google Scholar 

  14. Carbonell, J.G.: Counterplanning: a strategy-based model of adversary planning in real-world situations. Artif. Intell. 16(3), 295–329 (1981)

    Article  Google Scholar 

  15. de Cote, E.M., Chapman, A., Sykulski, A.M., Jennings, N.: Automated planning in repeated adversarial games. In: Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence, pp. 376–383 (2010)

    Google Scholar 

  16. Willmott, S., Richardson, J., Bundy, A., Levine, J.: Applying adversarial planning techniques to go. Theor. Comput. Sci. 252(12), 45–82 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Huang, H., Ding, J., Zhang, W., Tomlin, C.J.: A differential game approach to planning in adversarial scenarios: a case study on capture the flag. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation, pp. 1451–1456 (2011)

    Google Scholar 

  18. Tambe, M.: Towards flexible teamwork. J. Artif. Intell. Res. 7(1), 83–124 (1997)

    Google Scholar 

  19. Pynadath, D.V., Tambe, M.: Multiagent teamwork: analyzing the optimality and complexity of key theories and models. In: Proceedings of the 1st International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 873–880 (2002)

    Google Scholar 

  20. Jennings, N.R.: Controlling cooperative problem solving in industrial multi-agent systems using joint intentions. Artif. Intell. 75(2), 195–240 (1995)

    Article  Google Scholar 

  21. Jennings, N.R., Mamdani, E.H.: Using joint responsibility to coordinate collaborative problem solving in dynamic environments. In: Proceedings of the 10th National Conference on Artificial Intelligence, pp. 269–275 (1992)

    Google Scholar 

  22. Fulkerson, D.R., Ford, L.R.: Maximal flow through a network. Can. J. Math. 8(1), 399–404 (1956)

    MATH  MathSciNet  Google Scholar 

  23. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J. ACM 25(4), 921–940 (1988)

    Article  MathSciNet  Google Scholar 

  24. Stoer, M., Wagner, F.: A simple min-cut algorithm. J. ACM 44(4), 585–591 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Karger, D.R., Stein, C.: A new approach to the minimum cut problem. J. ACM 43(4), 601–640 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrada Voinitchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Voinitchi, A., Black, E., Luck, M. (2015). Towards the Disruption of Plans. In: Ghose, A., Oren, N., Telang, P., Thangarajah, J. (eds) Coordination, Organizations, Institutions, and Norms in Agent Systems X. COIN 2014. Lecture Notes in Computer Science(), vol 9372. Springer, Cham. https://doi.org/10.1007/978-3-319-25420-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25420-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25419-7

  • Online ISBN: 978-3-319-25420-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics