Skip to main content

Introduction to LiDAR in Geoarchaeology from a Technological Perspective

  • Chapter
  • First Online:
Digital Geoarchaeology

Part of the book series: Natural Science in Archaeology ((ARCHAEOLOGY))

Abstract

LiDAR is a remote sensing method established in the geosciences for capturing highly accurate three-dimensional geodata. It is increasingly used to support geoarchaeological research due to a range of advantages, including survey-grade data quality, real 3D geodata, nonselective coverage of scenes with high measurement density, on-demand data capturing, and comprehensive filtering options based on geometric and radiometric information.

Different LiDAR measurement principles are used to derive 3D geodata, e.g., time-of-flight, phase shift, and structured light. The captured datasets include real 3D XYZ coordinates (point clouds). Depending on the sensor system, also radiometric information is gathered for each point, e.g., RGB, strength, and full waveform of the backscattered signal.

The processing of point clouds in general follows a similar workflow. After data acquisition, the point clouds are registered. Depending on available radiometric information and research question, the data is radiometrically calibrated. After removing outliers, the point cloud is filtered according to the requirements of the study, and derivative products (e.g., DTMs) are generated (Chaps. 12 and 13). Finally, geospatial analyses are conducted directly in the final point cloud or derived elevation models (e.g., raster datasets, TINs), and the data can be used for visualization purposes.

With LiDAR, a wide range of spatial scales can be captured: (1) Object scale: single objects and their surfaces can be captured in high detail, allowing for studies, e.g., of engravings. (2) On-site scale: specific areas or objects like excavation sites or building complexes are surveyed and documented with static or dynamic scanners applied on-site (TLS, ULS, etc.). Such datasets covering sites of tens or several hundreds of meters are used in studies which examine the local spatial relations of objects and their immediate surroundings (see also Chap. 13). (3) Off-site scale: on a spatial scale covering whole regions, off-site scanning, mainly from an airborne platform, is applied.

However, the LiDAR method has some shortcomings, e.g., high costs for equipment, trained personnel, and processing the large amounts of data. Here, low-cost approaches can offer complementary data sources.

The described workflow leads to important implications for DGA regarding the filtering and calculation of derivatives. There is no universal filter but only tailored filters, depending on the available data and the aim of the study. Furthermore, the original, raw point cloud should always be available to enable subsequent analyses with new methods or different aims and objects of interest.

Emerging fields offering new possibilities for LiDAR in DGA are, e.g., multi-platform and multi-sensor approaches, the combination of spatial scales, multi-wavelength devices, multi-temporal datasets, and refined filtering based on radiometric information, e.g., full waveform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Auer M, Agugiaro G, Billen N, Loos L, Zipf A (2014) Web-based visualization and query of semantically segmented multiresolution 3D models in the field of cultural heritage. ISPRS Ann Photogramm Remote Sens Spat Inf Sci II-5:33–39. https://doi.org/10.5194/isprsannals-II-5-33-2014

    Article  Google Scholar 

  • Bennett R, Welham K, Hill RA, Ford A (2013) Using LiDAR as part of a multi-sensor approach to archaeological survey and interpretation. In: Opitz RS, Cowley DC (eds) Interpreting archaeological topography. 3D data, visualisation and observation. Oxbow Books, Oxford

    Google Scholar 

  • Beraldin JA, Blais F, Lohr U (2010) Laser scanning technology. In: Vosselman G, Maas HG (eds) Airborne and terrestrial laser scanning. CRC Press, Boca Raton

    Google Scholar 

  • Bevan A, Li X, Martinón-Torres M, Green S, Xia Y, Zhao K, Zhao Z, Ma S, Cao W, Rehren T (2014) Computer vision, archaeological classification and China’s terracotta warriors. J Archaeol Sci 49:249–254. https://doi.org/10.1016/j.jas.2014.05.014

    Article  Google Scholar 

  • Boeder V, Kersten T, Thies Th, Sauer A (2011) Mobile laser scanning on board hydrographic survey vessels – applications and accuracy investigations. In: Proceedings of FIG working week 2011, Marrakech, Marocco, 18–22 May 2011

    Google Scholar 

  • Böhler W, Heinz G (1999) Documentation, surveying, photogrammetry. In: Proceedings of XVII CIPA symposium, Olinda, Brazil, 3–6 Oct 1999

    Google Scholar 

  • Bondarev E, Heredia F, Favier R, Lingni M, de With PHN (2013) On photo-realistic 3D reconstruction of large-scale and arbitrary-shaped environments. IEEE consumer communications and networking conference, Las Vegas, 11–14 Jan 2013. https://doi.org/10.1109/CCNC.2013.6488511

  • Briese C (2010) Extraction of digital terrain models. In: Vosselman G, Maas HG (eds) Airborne and terrestrial laser scanning. CRC Press, Boca Raton

    Google Scholar 

  • Briese C, Pfennigbauer M, Ullrich A, Doneus M (2013) Multi-wavelength airborne laser scanning for archaeological prospection. Int Arch Photogramm Remote Sens Spat Inf Sci XL-5/W2:119–124

    Article  Google Scholar 

  • Brodu N, Lague D (2012) Terrestrial LiDAR data classification of complex natural scenes using a multi-scale dimensionality criteria: applications in geomorphology. J Photogramm Remote Sens 68:121–134. https://doi.org/10.1016/j.isprsjprs.2012.01.006

    Article  Google Scholar 

  • Challis K, Howard AJ (2013) The role of LiDAR intensity data in interpreting environmental and cultural archaeological landscapes. In: Opitz RS, Cowley DC (eds) Interpreting archaeological topography. 3D data, visualisation and observation. Oxbow Books, Oxford

    Google Scholar 

  • Diskin S, Heyvaert VMA, Pavlopoulos K, Schütt B (2013) Geoarchaeology: a toolbox of approaches applied in a multidisciplinary research discipline. Quat Int 308–309:1–3. https://doi.org/10.1016/j.quaint.2013.09.004

    Article  Google Scholar 

  • Doneus M, Briese C, Studnicka N (2010) Analysis of full-waveform ALS data by simultaneously acquired TLS data: towards an advanced DTM generation in wooded areas. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVIII(7B):193–198

    Google Scholar 

  • Doneus M, Doneus N, Briese C, Pregesbauer M, Mandlburger G, Verhoeven G (2013) Airborne laser bathymetry – detecting and recording submerged archaeological sites from the air. J Archaeol Sci 40(4):2136–2151. https://doi.org/10.1016/j.jas.2012.12.021

    Article  Google Scholar 

  • Elbering SO, Khoshelham K (2015) Automatic extraction of railroad centerlines from mobile laser scanning data. Remote Sens 7(5):5565–5583. https://doi.org/10.3390/rs70505565

    Article  Google Scholar 

  • El-Sheimy N (2009) Georeferencing component of LiDAR systems. In: Shan J, Toth CK (eds) Topographic laser ranging and scanning. Principles and processing. CRC Press, Boca Raton

    Google Scholar 

  • Fernandez-Diaz JC, Carter WE, Shrestha RL, Glennie CL (2014) Now you see it… now you don’t: understanding airborne mapping LiDAR collection and data product generation for archaeological research in Mesoamerica. Remote Sens 6:9951–10001. https://doi.org/10.3390/rs6109951

    Article  Google Scholar 

  • Forbriger M, Müller L, Siart C, Schittek K, Höfle B, Bubenzer O, Reindel M, Eitel B (2011) Terrestrial laser scanning in geoarchaeology – capturing one of the oldest settlement places in the high Andes of southern Peru. Geophys Res Abstr 13(EGU2011-12236)

    Google Scholar 

  • Forbriger M, Mara H, Rieck B, Siart C, Wagener O (2013) Der “Gesprengte Turm” am Heidelberger Schloss Untersuchung eines Kulturdenkmals mithilfe hoch auflösender terrestrischer Laserscans. Denkmalpflege in Baden-Württemberg - Nachrichtenblatt Landesdenkmalpflege 3(2013):165–168

    Google Scholar 

  • Ghilardi M, Desruelles S (2009) Geoarchaeology: where human, social and earth sciences meet with technology. SAPIENS 2(2)

    Google Scholar 

  • Heritage G, Hetherington D (2007) Towards a protocol for laser scanning in fluvial geomorphology. Earth Surf Process Landf 32:66–74. https://doi.org/10.1002/esp.1375

    Article  Google Scholar 

  • Heritage G, Large A (2009) Principles of 3D laser lcanning. In: Heritage G, Large A (eds) Laser scanning for the environmental sciences. Wiley-Blackwell, Chichester

    Chapter  Google Scholar 

  • Hesse R (2013) The changing picture of archaeological landscapes: lidar prospection over very large areas as part of a cultural heritage strategy. In: Opitz RS, Cowley DC (eds) Interpreting archaeological topography. 3D data, visualisation and observation. Oxbow Books, Oxford

    Google Scholar 

  • Hesse R (2014) Geomorphological traces of conflict in high-resolution elevation models. App Geogr 46:11–20. https://doi.org/10.1016/j.apgeog.2013.10.004

    Article  Google Scholar 

  • Hesse R (2015) Combining structure-from-motion with high and intermediate resolution satellite images to document threats to archaeological heritage in arid environments. J Cult Herit 16(2):192–201. https://doi.org/10.1016/j.culher.2014.04.003

    Article  Google Scholar 

  • Hoffmeister D, Bolten A, Curdt C, Waldhoff G, Bareth G (2010) High resolution crop surface models (CSM) and crop volume models (CVM) on field level by terrestrial laserscanning. Proc SPIE 7840:78400E. https://doi.org/10.1117/12.872315

    Article  Google Scholar 

  • Höfle B (2014) Radiometric correction of terrestrial LiDAR point cloud data for individual maize plant detection. IEEE Geosci Remote Sens Lett 11(1):94–98. https://doi.org/10.1109/LGRS.2013.2247022

    Article  Google Scholar 

  • Höfle B, Pfeifer N (2007) Correction of laser scanning intensity data: data and model-driven approaches. ISPRS J Photogramm Remote Sens 62(6):415–433. https://doi.org/10.1016/j.isprsjprs.2007.05.008

    Article  Google Scholar 

  • Höfle B, Wagener O (2012) Burgen in der Landschaft - Inszenierung und Entzifferung anhand neuer Methoden. In: Wagener O (ed) Symbole der Macht? Aspekte mittelalterlicher und frühneuzeitlicher Architektur. Peter Lang, Frankfurt am Main

    Google Scholar 

  • Höfle B, Mücke W, Dutter M, Rutzinger M, Dorninger P (2009) Detection of building regions using airborne LiDAR – a new combination of raster and point cloud based GIS methods. In: Proceedings of 21st AGIT symposium Angewandte Geoinformatik, Salzburg, Austria, 8–10 July 2009

    Google Scholar 

  • Johnson KM, Ouimet WB (2014) Rediscovering the lost archaeological landscape of southern New England using airborne light detection and ranging (LiDAR). J Archaeol Sci 43:9–20. https://doi.org/10.1016/j.jas.2013.12.004

    Article  Google Scholar 

  • Koenig K, Höfle B, Müller L, Hämmerle M, Jarmer T, Siegmann B, Lilienthal H (2013) Radiometric correction of terrestrial LiDAR data for mapping of harvest residues density. ISPRS Ann Photogramm Remote Sens Spatial Inf Sci II-5(W2):133–138. https://doi.org/10.5194/isprsannals-II-5-W2-133-2013

    Article  Google Scholar 

  • Krömker S (2013) Neue Methoden zur besseren Lesbarkeit mittelalterlicher Grabsteine am Beispiel des Heiligen Sands in Worms. In: Heberer P (ed) Die SchUM-Gemeinden Speyer - Worms - Mainz. Auf dem Weg zum Welterbe. Schnell & Steiner, Regensburg

    Google Scholar 

  • Liang X, Hyyppä J, Kukko A, Kaartinen H, Jaakkola A, Yu X (2014a) The use of a mobile laser scanning system for mapping large forest plots. IEEE Geosci Remote Sens Lett 11(9):1504–1508. https://doi.org/10.1109/LGRS.2013.2297418

    Article  Google Scholar 

  • Liang X, Kukko A, Kaartinen H, Hyyppä J, Yu X, Jaakkola A, Wang Y (2014b) Possibilities of a personal laser scanning system for forest mapping and ecosystem services. Sensors 14(1):1228–1248. https://doi.org/10.3390/s140101228

    Article  Google Scholar 

  • Lichti D, Skaloud J (2010) Registration and calibration. In: Vosselman G, Maas HG (eds) Airborne and terrestrial laser scanning. CRC Press, Boca Raton

    Google Scholar 

  • Mara H, Krömker S, Jakob S, Breuckmann B (2010) GigaMesh and Gilgamesh – 3D multiscale integral invariant cuneiform character extraction. In: Artusi A, Joly M, Lucet G, Pitzalis D, Ribes A (eds) Proceedings of the 11th international VAST symposium on virtual reality, archaeology and cultural heritage, Paris, France

    Google Scholar 

  • Meister S, Kohli P, Izadi S, Hämmerle M, Rother C, Kondermann D (2012) When can we use KinectFusion for ground truth acquisition? In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems, Vilamoura, Portugal, 7–12 Oct 2012

    Google Scholar 

  • Petrie G, Toth CK (2009a) Introduction to laser ranging, profiling, and scanning. In: Shan J, Toth CK (eds) Topographic laser ranging and scanning. Principles and processing. CRC Press, Boca Raton

    Google Scholar 

  • Petrie G, Toth CK (2009b) Airborne and spaceborne laser profilers and scanners. In: Shan J, Toth CK (eds) Topographic laser ranging and scanning. Principles and processing. CRC Press, Boca Raton

    Google Scholar 

  • Petrie G, Toth CK (2009c) Terrestrial laser scanners. In: Shan J, Toth CK (eds) Topographic laser ranging and scanning. Principles and processing. CRC Press, Boca Raton

    Google Scholar 

  • Pfeifer N, Mandlburger G (2009) LiDAR data filtering and DTM generation. In: Shan J, Toth CK (eds) Topographic laser ranging and scanning. Principles and processing. CRC Press, Boca Raton

    Google Scholar 

  • Pfenningbauer M, Riegl U, Rieger P, Amon P (2014) UAS based laser scanning for forest inventory and precision farming. In: Proceedings of the international workshop on remote sensing and GIS for monitoring of habitat quality, Vienna, Austria, 24–25 Sept 2014

    Google Scholar 

  • Rapp G Jr, Hill CL (2009) Geoarchaeology. Yale University Press, New Haven

    Google Scholar 

  • Remondino F (2013) Worth a thousand words – photogrammetry for archaeological 3D surveying. In: Opitz RS, Cowley DC (eds) Interpreting archaeological topography. 3D data, visualisation and observation. Oxbow Books, Oxford

    Google Scholar 

  • Renfrew C (1976) Archaeology and the earth sciences. In: Davidson DA, Shackley ML (eds) Geoarchaeology. Earth Science and the Past. Duckworth, London

    Google Scholar 

  • Risbøl O (2013) Cultivating the ‘wilderness’ – how lidar can improve archaeological landscape understanding. In: Opitz RS, Cowley DC (eds) Interpreting archaeological topography. 3D data, visualisation and observation. Oxbow Books, Oxford

    Google Scholar 

  • Sarbolandi H, Lefloch D, Kolb A (2015) Kinect range sensing: structured-light versus time-of-flight Kinect. Comput Vision Image Underst. https://doi.org/10.1016/j.cviu.2015.05.006

  • Schneider A, Takla M, Nicolay A, Raab A, Raab T (2014) A template-matching approach combining morphometric variables for automated mapping of charcoal kiln sites. Archaeol Prospect 22(1):45–62. https://doi.org/10.1002/arp.1497

    Article  Google Scholar 

  • Siart C (2018) Merging the views: highlights on the fusion of surface and subsurface geodata and their potentials for digital geoarchaeology. In: Siart C, Forbriger M, Bubenzer O (eds) Digital geoarchaeology – new techniques for interdisciplinary human-environmental research. Springer, Heidelberg, pp 253–266

    Google Scholar 

  • Siart C, Ghilardi M, Holzhauer I (2009) Geoarchaeological study of karst depressions integrating geophysical and sedimentological methods: case studies from Zominthos and Lato (Central and East Crete, Greece). Géomorphol Relief Process Environ 4:17–32. https://doi.org/10.4000/geomorphologie.7709

    Google Scholar 

  • Siart C, Forbriger M, Nowaczinski E, Hecht S, Höfle B (2013) Fusion of multi-resolution surface (terrestrial laser scanning) and subsurface geodata (ERT, SRT) for karst landform investigation and geomorphometric quantification. Earth Surf Process Landf 38(10):1135–1147. https://doi.org/10.1002/esp.3394

    Article  Google Scholar 

  • Sithole G, Vosselman G (2004) Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds. ISPRS J Photogramm Remote Sens 59(1–2):85–101. https://doi.org/10.1016/j.isprsjprs.2004.05.004

    Article  Google Scholar 

  • Stilla U, Jutzi B (2009) Waveform analysis for small-footprint pulsed laser systems. In: Shan J, Toth CK (eds) Topographic laser ranging and scanning. Principles and processing. CRC Press, Boca Raton

    Google Scholar 

  • Wallace L, Lucieer A, Watson C, Turner D (2012) Development of a UAV-LiDAR system with application to forest inventory. Remote Sens 4:1519–1543. https://doi.org/10.3390/rs4061519

    Article  Google Scholar 

  • Zielhofer C, Clare L, Rollefson G, Wächter S, Hoffmeister D, Bareth G, Roettig C, Bullmann H, Schneider B, Berke H, Weninger B (2012) The decline of the early Neolithic population center of ‘Ain Ghazal and corresponding earth-surface processes, Jordan Rift Valley. Quat Res 78(3):427–441. https://doi.org/10.1016/j.yqres.2012.08.006

    Article  Google Scholar 

  • Zlot R, Bosse M, Greenop K, Jarzab Z, Juckes E, Roberts J (2014) Efficiently capturing large, complex cultural heritage sites with a handheld mobile 3D laser mapping system. J Cult Herit 15(6):670–678. https://doi.org/10.1016/j.culher.2013.11.009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hämmerle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hämmerle, M., Höfle, B. (2018). Introduction to LiDAR in Geoarchaeology from a Technological Perspective. In: Siart, C., Forbriger, M., Bubenzer, O. (eds) Digital Geoarchaeology. Natural Science in Archaeology. Springer, Cham. https://doi.org/10.1007/978-3-319-25316-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25316-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25314-5

  • Online ISBN: 978-3-319-25316-9

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics