Skip to main content

Recharging Probably Keeps Batteries Alive

  • Conference paper
  • First Online:
Book cover Cyber Physical Systems. Design, Modeling, and Evaluation (CyPhy 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9361))

Abstract

Battery powered systems are a major area of cyber physical system innovation. This paper develops a kinetic battery model with bounded capacity in the context of piecewise constant yet random charging and discharging. The resulting model enables a faithful time-dependent evaluation of the risk of a mission failure due to battery depletion. This is exemplified in a power dependability study of a nano satellite mission currently in orbit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abate, A., Prandini, M., Lygeros, J., Sastry, S.: Probabilistic reachability and safety for controlled discrete time stochastic hybrid systems. Automatica 44(11), 2724–2734 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Altman, E., Gaitsgory, V.: Asymptotic optimization of a nonlinear hybrid system governed by a markov decision process. SIAM J. Control Optim. 35(6), 2070–2085 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aydin, H., Mejía-Alvarez, P., Mossé, D., Melhem, R.G.: Dynamic and aggressive scheduling techniques for power-aware real-time systems. IEEE RTSS 2001, 95–105 (2001)

    Google Scholar 

  4. Blom, H.A., Lygeros, J., Everdij, M., Loizou, S., Kyriakopoulos, K.: Stochastic Hybrid Systems: Theory and Safety Critical Applications. LNCS, vol. 337. Springer, Heidelberg (2006)

    Book  Google Scholar 

  5. Boker, U., Henzinger, T.A., Radhakrishna, A.: Battery transition systems. In: POPL, pp. 595–606. ACM (2014)

    Google Scholar 

  6. Bujorianu, M.L., Lygeros, J., Bujorianu, M.C.: Bisimulation for general stochastic hybrid systems. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 198–214. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Cao, J., Schofield, N., Emadi, A.: Battery balancing methods: a comprehensive review. In: Vehicle Power and Propulsion Conference, VPPC 2008, pp. 1–6. IEEE, September 2008

    Google Scholar 

  8. Cloth, L., Jongerden, M.R., Haverkort, B.R.: Computing battery lifetime distributions. In: DSN, pp. 780–789. IEEE Computer Society (2007)

    Google Scholar 

  9. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the lambertW function. Adv. Comput. Math. 5(1), 329–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Davis, M.H.: Piecewise-deterministic markov processes: a general class of non-diffusion stochastic models. J. Roy. Stat. Soc. Ser. B (Methodol.) 46, 353–388 (1984)

    MATH  Google Scholar 

  11. Esa: Esa cubesat program, October 2014. http://www.esa.int/Education/CubeSats

  12. Soudjani, S.E.Z., Gevaerts, C., Abate, A.: Faust2: formal abstractions of uncountable-state stochastic processes. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 272–286. Springer, Heidelberg (2015)

    Google Scholar 

  13. Fox, M., Long, D., Magazzeni, D.: Automatic construction of efficient multiple battery usage policies. In: Walsh, T. (ed.) IJCAI, pp. 2620–2625. IJCAI/AAAI (2011)

    Google Scholar 

  14. Fränzle, M., Hahn, E.M., Hermanns, H., Wolovick, N., Zhang, L.: Measurability and safety verification for stochastic hybrid systems. In: HSCC, pp. 43–52. ACM Press, New York, NY, USA (2011)

    Google Scholar 

  15. Fränzle, M., Hermanns, H., Teige, T.: Stochastic satisfiability modulo theory: a novel technique for the analysis of probabilistic hybrid systems. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 172–186. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Gilles, P.: Private communication (2014)

    Google Scholar 

  17. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  18. GomSpace: Gomspace gomx-1, October 2014. http://gomspace.com/?p=gomx1

  19. Henzinger, T.A.: The theory of hybrid automata. In: Kemal Inan, M., Kurshan, R.P. (eds.) Verification of Digital and Hybrid Systems. NATO ASI Series, vol. 170, pp. 265–292. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  20. Henzinger, T.A., Sifakis, J.: The embedded systems design challenge. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 1–15. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Hermanns, H., Krcál, J., Nies, G.: Recharging probably keeps batteries alive. CoRR abs/1502.07120 (2015)

    Google Scholar 

  22. Jongerden, M., Haverkort, B., Bohnenkamp, H., Katoen, J.: Maximizing system lifetime by battery scheduling. In: DSN, pp. 63–72. IEEE (2009)

    Google Scholar 

  23. Jongerden, M.R., Haverkort, B.R.: Which battery model to use? IET Softw. 3(6), 445–457 (2009)

    Article  Google Scholar 

  24. Jongerden, M.R.: Model-based energy analysis of battery powered systems. Ph.d. thesis, Enschede, December 2010

    Google Scholar 

  25. Liaw, B.Y., Roth, E.P., Jungst, R.G., Nagasubramanian, G., Case, H.L., Doughty, D.H.: Correlation of arrhenius behaviors in power and capacity fades with cell impedance and heat generation in cylindrical lithium-ion cells. J. Power Sources 119, 874–886 (2003)

    Article  Google Scholar 

  26. Liu, J., Chou, P.H., Bagherzadeh, N., Kurdahi, F.: Power-aware scheduling under timing constraints for mission-critical embedded systems. In: DAC, pp. 840–845. ACM, New York, NY, USA (2001)

    Google Scholar 

  27. Manwell, J.F., McGowan, J.G.: Lead acid battery storage model for hybrid energy systems. Sol. Energy 50(5), 399–405 (1993)

    Article  Google Scholar 

  28. Rao, V., Singhal, G., Kumar, A., Navet, N.: Battery model for embedded systems. In: VLSI Design/ES Design, pp. 105–110. IEEE (2005)

    Google Scholar 

  29. SENSATION: Sensation, March 2015. http://www.sensation-project.eu/

  30. Sproston, J.: Decidable model checking of probabilistic hybrid automata. In: Joseph, M. (ed.) FTRTFT 2000. LNCS, vol. 1926, p. 31. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  31. Villén-Altamirano, M., Villén-Altamirano, J.: Restart: a straightforward method for fast simulation of rare events. In: WSC, pp. 282–289. IEEE (1994)

    Google Scholar 

  32. Wognsen, E.R., Hansen, R.R., Larsen, K.G.: Battery-aware scheduling of mixed criticality systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp. 208–222. Springer, Heidelberg (2014)

    Google Scholar 

  33. Zhang, L., She, Z., Ratschan, S., Hermanns, H., Hahn, E.M.: Safety verification for probabilistic hybrid systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 196–211. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors are grateful for inspiring discussions with Peter Bak and Morten Bisgaard (GomSpace ApS), Erik R. Wognsen (Aalborg University), and other members of the SENSATION consortium, as well as with Pascal Gilles (ESA Centre for Earth Observation), Xavier Bossoreille (Deutsches Zentrum für Luft- und Raumfahrt) and Marc Bouissou (Électricité de France S.A., École Centrale Paris - LGI).

This work is supported by the EU 7th Framework Programme under grant agreements 295261 (MEALS) and 318490 (SENSATION), by the DFG as part of SFB/TR 14 AVACS, by the Czech Science Foundation under grant agreement P202/12/G061, by the CAS/SAFEA International Partnership Program for Creative Research Teams, and by the CDZ project CAP (GZ 1023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Nies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hermanns, H., Krčál, J., Nies, G. (2015). Recharging Probably Keeps Batteries Alive. In: Mousavi, M., Berger, C. (eds) Cyber Physical Systems. Design, Modeling, and Evaluation. CyPhy 2015. Lecture Notes in Computer Science(), vol 9361. Springer, Cham. https://doi.org/10.1007/978-3-319-25141-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25141-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25140-0

  • Online ISBN: 978-3-319-25141-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics