Skip to main content

PDE Constrained Shape Optimization as Optimization on Shape Manifolds

  • Conference paper
  • First Online:
Book cover Geometric Science of Information (GSI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9389))

Included in the following conference series:

Abstract

The novel Riemannian view on shape optimization introduced in [14] is extended to a Lagrange–Newton as well as a quasi–Newton approach for PDE constrained shape optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)

    Book  MATH  Google Scholar 

  2. Arian, E., Vatsa, V.N.: A preconditioning method for shape optimization governed by the Euler equations. Technical report, Institute for Computer Applications in Science and Engineering (ICASE), pp. 98–14 (1998)

    Google Scholar 

  3. Ameur, H.B., Burger, M., Hackl, B.: Level set methods for geometric inverse problems in linear elasticity. Inverse Prob. 20, 673–696 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Correa, R., Seeger, A.: Directional derivative of a minmax function. Nonlinear Anal. 9(1), 13–22 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Delfour, M.C., Zolésio, J.-P.: Shapes and Geometries: Analysis, Differential Calculus, and Optimization. Advances in Design and Control. SIAM Philadelphia, Philadelphia (2001)

    MATH  Google Scholar 

  6. Gabay, D.: Minimizing a differentiable function over a differential manifold. J. Optim. Theor. Appl. 37(2), 177–219 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eppler, K., Harbrecht, H.: A regularized Newton method in electrical impedance tomography using shape Hessian information. Control Cybern. 34(1), 203–225 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Eppler, K., Schmidt, S., Schulz, V.H., Ilic, C.: Preconditioning the pressure tracking in fluid dynamics by shape Hessian information. J. Optim. Theory Appl. 141(3), 513–531 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Michor, P.W., Mumford, D.: Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. (JEMS) 8, 1–48 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mohammadi, B., Pironneau, O.: Applied Shape Optimization for Fluids, Numerical Mathematics and Scientific Computation. Clarendon Press, Oxford (2001)

    MATH  Google Scholar 

  11. Nägel, A., Schulz, V.H., Siebenborn, M., Wittum, G.: Scalable shape optimization methods for structured inverse modeling in 3D diffusive processes. Comput. Vis. Sci. (2015). doi10.1007/s00791-015-0248-9

  12. Novruzi, A., Roche, J.R.: Newton’s method in shape optimisation: a three-dimensional case. BIT Numer. Math. 40, 102–120 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ring, W., Wirth, B.: Optimization methods on Riemannian manifolds and their application to shape space. SIAM J. Optim. 22, 596–627 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Schulz, V.H.: A Riemannian view on shape optimization. Found. Comput. Math. 14, 483–501 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schulz, V.H., Siebenborn, M., Welker, K.: Towards a Lagrange-Newton approach for PDE constrained shape optimization. In: Leugering, G., et al., (eds.) New Trends in Shape Optimization. International Series of Numerical Mathematics, vol. 166. Springer (2015). doi:10.1007/978-3-319-17563-8

  16. Schulz, V.H., Siebenborn, M., Welker, K.: Structured inverse modeling in parabolic diffusion problems. SICON (2014, submitted to). arXiv:1409.3464

  17. Sokolowski, J., Zolésio, J.-P.: Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer Series in Computational Mathematics, vol. 16. Springer, Heidelberg (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathrin Welker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Schulz, V.H., Siebenborn, M., Welker, K. (2015). PDE Constrained Shape Optimization as Optimization on Shape Manifolds. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2015. Lecture Notes in Computer Science(), vol 9389. Springer, Cham. https://doi.org/10.1007/978-3-319-25040-3_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25040-3_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25039-7

  • Online ISBN: 978-3-319-25040-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics