Skip to main content

Regressor Based Estimation of the Eye Pupil Center

  • Conference paper
  • First Online:
Pattern Recognition (DAGM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9358))

Included in the following conference series:

Abstract

The locations of the eye pupil centers are used in a wide range of computer vision applications. Although there are successful commercial eye gaze tracking systems, their practical employment is limited due to required specialized hardware and extra restrictions on the users. On the other hand, the precision and robustness of the off the shelf camera based systems are not at desirable levels. We propose a general purpose eye pupil center estimation method without any specialized hardware. The system trains a regressor using HoG features with the distance between the ground-truth pupil center and the center of the train patches. We found HoG features to be very useful to capture the unique gradient angle information around the eye pupils. The system uses a sliding window approach to produce a score image that contains the regressor estimated distances to the pupil center. The best center positions of two pupils among the candidate centers are selected from the produced score images. We evaluate our method on the challenging BioID and Columbia CAVE data sets. The results of the experiments are overall very promising and the system exceeds the precision of the similar state of the art methods. The performance of the proposed system is especially favorable on extreme eye gaze angles and head poses. The results of all test images are publicly available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Duchowski, A.: Eye Tracking Methodology: Theory and Practice. Springer, London (2007)

    Google Scholar 

  2. Poole, A., Linden, B.J.: Eye tracking in HCI and usability research. In: Encyclopedia of Human Computer Interaction, pp. 211–219. Idea Group, Pennsylvania (2006)

    Google Scholar 

  3. Rayner, K., Rotello, C.M., Stewart, A.J., Keir, J., Duffy, S.A.: Integrating text and pictorial information: eye movements when looking at print advertisements. J. Exp. Psychol. Appl. 7(3), 219–226 (2001)

    Article  Google Scholar 

  4. Levine, J.: An eye-controlled computer. IBM Thomas J. Watson Research Center, Yorktown Heights, N.Y. (1982)

    Google Scholar 

  5. Li, D., Babcock, J., Parkhurst, D.J.: openEyes: a low-cost head-mounted eye-tracking solution. In: Proceedings of the 2006 Symposium on Eye Tracking Research & Applications (2006)

    Google Scholar 

  6. Ohno, T., Mukawa, N.: A free-head, simple calibration, gaze tracking system that enables gaze-based interaction. In: Proceedings of the 2004 Symposium on Eye Tracking Research & Applications (2004)

    Google Scholar 

  7. Valenti, R., Gevers, T.: Accurate eye center location through invariant isocentric patterns. IEEE Trans. Pattern Anal. Mach. Intell. 34(9), 1785–1798 (2012)

    Article  Google Scholar 

  8. Hamouz, M., Josef, K., Kamarainen, J.-K., Pekka, P., Heikki, K., Jiri, M.: Feature-based affine-invariant localization of faces. IEEE Trans. Pattern Anal. Mach. Intell. 27(9), 1490–1495 (2005)

    Article  Google Scholar 

  9. Wang, P., Ji, Q.: Multi-view face and eye detection using discriminant features. Comput. Vis. Image Underst. 105(2), 99–111 (2007)

    Article  Google Scholar 

  10. Markus, N., Frljak, M., Pandzic, I.S., Ahlberg, J., Forchheimer, R.: Eye pupil localization with an ensemble of randomized trees. Pattern Recogn. 47(2), 578–587 (2014)

    Article  Google Scholar 

  11. Timm, F., Barth, E.: Accurate eye centre localisation by means of gradients. In: VISAPP (2011)

    Google Scholar 

  12. Campadelli, P., Lanzarotti, R., Lipori, G.: Precise eye localization through a general-to-specific model definition. In: BMVC (2006)

    Google Scholar 

  13. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from single depth images. Commun. ACM 56(1), 116–124 (2013)

    Article  Google Scholar 

  14. Sironi, A., Lepetit, V., Fua, P.: Multiscale centerline detection by learning a scale-space distance transform. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

    Google Scholar 

  15. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2005)

    Google Scholar 

  16. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  17. Drucker, H., Burges, C.J., Kaufman, L., Smola, A., Vapnik, V.: Machines, support vector regression. In: Advances in Neural Information Processing Systems, pp. 155–161 (1997)

    Google Scholar 

  18. Karakoc, N.S., Karahan, S., Akgul, Y.S.: Iterative estimation of the eye pupil center. In: Signal Processing and Communications Applications Conference (SIU), Turkey, In Turkish (2015)

    Google Scholar 

  19. Chen, S., Liu, C.: Precise eye detection using discriminating HOG features. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011, Part I. LNCS, vol. 6854, pp. 443–450. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  20. Monzo, D., Albiol, A., Sastre, J., Albiol, A.A.: Precise eye localization using HOG descriptors. Mach. Vis. Appl. 22(3), 471–480 (2011)

    Google Scholar 

  21. BioID Image Dataset. https://www.bioid.com/About/BioID-Face-Database. Accessed May 2015

  22. Oliver, J., Kirchberg, K.J., Frischholz, R.W.: Robust face detection using the hausdorff distance. In: Audio-and video-Based Biometric Person Authentication, pp. 90–95 (2001)

    Google Scholar 

  23. Estimation of The Eye Gaze Direction. http://vision.gyte.edu.tr/projects.php?id=14. Accessed July 2015

  24. Smith, B.A., Yin, Q., Feiner, S.K., Nayar, S.K.: Gaze locking: passive eye contact detection for human-object interaction. In: Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology (2013)

    Google Scholar 

  25. Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Necmeddin Said Karakoc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Karakoc, N.S., Karahan, S., Akgul, Y.S. (2015). Regressor Based Estimation of the Eye Pupil Center. In: Gall, J., Gehler, P., Leibe, B. (eds) Pattern Recognition. DAGM 2015. Lecture Notes in Computer Science(), vol 9358. Springer, Cham. https://doi.org/10.1007/978-3-319-24947-6_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24947-6_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24946-9

  • Online ISBN: 978-3-319-24947-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics