Skip to main content

Large Scale Indefinite Kernel Fisher Discriminant

  • Conference paper
  • First Online:
Similarity-Based Pattern Recognition (SIMBAD 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9370))

Included in the following conference series:

Abstract

Indefinite similarity measures can be frequently found in bio-informatics by means of alignment scores. Lacking an underlying vector space, the data are given as pairwise similarities only. Indefinite Kernel Fisher Discriminant (iKFD) is a very effective classifier for this type of data but has cubic complexity and does not scale to larger problems. Here we propose an extension of iKFD such that linear runtime and memory complexity is achieved for low rank indefinite kernels. Evaluation at several larger similarity data from various domains shows that the proposed method provides similar generalization capabilities while being substantially faster for large scale data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For multiclass problems a classical 1 vs rest wrapper is used within this paper.

  2. 2.

    For symmetric matrices we have \(\tilde{K}\tilde{K}^\top \) = \(\tilde{K}^\top \tilde{K}\).

  3. 3.

    An implementation of this linear time eigen-decomposition for low rank indefinite matrices is available at: http://www.techfak.uni-bielefeld.de/~fschleif/eigenvalue_corrections_demos.tgz.

  4. 4.

    In [18] various correction methods have been studied on the same data indicating that eigenvalue corrections may be helpful if indefiniteness can be attributed to noise.

  5. 5.

    An increase of the number of landmarks leads to a better kernel reconstruction in the Frobenius norm until the full rank of the matrix is reached. Landmarks have not been changed between methods but only for each dataset.

  6. 6.

    Also the runtime and model complexity are similar and therefore not reported in the following.

References

  1. Alabdulmohsin, I.M., Gao, X., Zhang, X.: Support vector machines with indefinite kernels. In: Phung, D., Li, H. (eds.) Proceedings of the Sixth Asian Conference on Machine Learning, ACML 2014. JMLR Proceedings, Nha Trang City, Vietnam, 26–28 November 2014, vol. 39 (2014). JMLR.org

  2. Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.-C., Estreicher, A., Gasteiger, E., Martin, M., Michoud, K., O’Donovan, C., Phan, I., Pilbout, S., Schneider, M.: The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370 (2003)

    Article  Google Scholar 

  3. Chen, H., Tino, P., Yao, X.: Probabilistic classification vector machines. IEEE Trans. Neural Netw. 20(6), 901–914 (2009)

    Article  Google Scholar 

  4. Chen, H., Tino, P., Yao, X.: Efficient probabilistic classification vector machine with incremental basis function selection. IEEE TNN-LS 25(2), 356–369 (2014)

    Google Scholar 

  5. Chen, Y., Garcia, E.K., Gupta, M.R., Rahimi, A., Cazzanti, L.: Similarity-based classification: concepts and algorithms. JMLR 10, 747–776 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Diethe, T., Hussain, Z., Hardoon, D.R., Shawe-Taylor, J.: Matching pursuit kernel fisher discriminant analysis. In: Dyk, D.A.V., Welling, M. (eds.) Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics, AISTATS 2009. JMLR Proceedings, 16–18 April 2009, Clearwater Beach, Florida, USA, vol. 5, pp. 121–128 (2009). JMLR.org

  7. Dubuisson, M., Jain, A.: A modified hausdorff distance for object matching. In: Proceedings of the 12th IAPR International Conference on Pattern Recognition, 1994. Vol. 1 - Conference A: Computer Vision amp; Image Processing., vol. 1, pp. 566–568, October 1994

    Google Scholar 

  8. Duin, R.P.: prtools, March 2012

    Google Scholar 

  9. Gisbrecht, A., Schleif, F.-M.: Metric and non-metric proximity transformations at linear costs. Neurocomputing (2015, to appear)

    Google Scholar 

  10. Haasdonk, B.: Feature space interpretation of svms with indefinite kernels. IEEE Trans. Pattern Anal. Mach. Intell. 27(4), 482–492 (2005)

    Article  Google Scholar 

  11. Haasdonk, B., Pekalska, E.: Indefinite kernel fisher discriminant. In: 19th International Conference on Pattern Recognition (ICPR 2008), 8–11 December 2008, Tampa, Florida, USA, pp. 1–4. IEEE Computer Society (2008)

    Google Scholar 

  12. Ling, H., Jacobs, D.W.: Shape classification using the inner-distance. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 286–299 (2007)

    Article  Google Scholar 

  13. Mokbel, B., Hasenfuss, A., Hammer, B.: Graph-based representation of symbolic musical data. In: Torsello, A., Escolano, F., Brun, L. (eds.) GbRPR 2009. LNCS, vol. 5534, pp. 42–51. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Neuhaus, M., Bunke, H.: Edit distance based kernel functions for structural pattern classification. Pattern Recogn. 39(10), 1852–1863 (2006)

    Article  MATH  Google Scholar 

  15. Pekalska, E., Haasdonk, B.: Kernel discriminant analysis for positive definite and indefinite kernels. IEEE Trans. Pattern Anal. Mach. Intell. 31(6), 1017–1031 (2009)

    Article  Google Scholar 

  16. Schleif, F.-M., Gisbrecht, A., Tino, P.: Probabilistic classification vector machine at large scale. In: Proceedings of ESANN 2015, pp. 555–560 (2015)

    Google Scholar 

  17. Schleif, F.-M., Gisbrecht, A.: Data analysis of (non-)metric proximities at linear costs. In: Hancock, E., Pelillo, M. (eds.) SIMBAD 2013. LNCS, vol. 7953, pp. 59–74. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  18. Schleif, F.-M., Tino, P.: Indefinite proximity learning - a review. Neural Computation (2015, to appear)

    Google Scholar 

  19. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147(1), 195–197 (1981)

    Article  Google Scholar 

  20. Williams, C.K.I., Seeger, M.: Using the nyström method to speed up kernel machines. In: NIPS 2000, pp. 682–688 (2000)

    Google Scholar 

  21. Yang, J., Fan, L.: A novel indefinite kernel dimensionality reduction algorithm: weighted generalized indefinite kernel discriminant analysis. Neural Process. Lett. 40(3), 301–313 (2014). doi:10.1007/s11063-013-9330-9

    Article  Google Scholar 

  22. Zhang, K., Kwok, J.T.: Clustered nyström method for large scale manifold learning and dimension reduction. IEEE Trans. Neural Netw. 21(10), 1576–1587 (2010)

    Article  Google Scholar 

Download references

Acknowledgment

A Marie Curie Intra-European Fellowship (IEF): FP7-PEOPLE-2012-IEF (FP7-327791-ProMoS) and support from the Cluster of Excellence 277 Cognitive Interaction Technology funded by the German Excellence Initiative is gratefully acknowledged. PT was supported by the EPSRC grant EP/L000296/1, “Personalized Health Care through Learning in the Model Space”. We would like to thank R. Duin, Delft University for various support with distools and prtools and Huanhuan Chen,University of Science and Technology of China, for providing support with the Probabilistic Classification Vector Machine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank-Michael Schleif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Schleif, FM., Gisbrecht, A., Tino, P. (2015). Large Scale Indefinite Kernel Fisher Discriminant. In: Feragen, A., Pelillo, M., Loog, M. (eds) Similarity-Based Pattern Recognition. SIMBAD 2015. Lecture Notes in Computer Science(), vol 9370. Springer, Cham. https://doi.org/10.1007/978-3-319-24261-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24261-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24260-6

  • Online ISBN: 978-3-319-24261-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics