Skip to main content

Antimicrobial Peptides in Host Defense: Functions Beyond Antimicrobial Activity

  • Chapter
  • First Online:
Book cover Antimicrobial Peptides

Abstract

Antimicrobial peptides are well known for their important roles in host defense by enhancing the barrier function and limiting microbial populations of the skin and mucosa. However, many of these peptides are now known to have additional roles assisting innate and adaptive immune functions. To facilitate innate immunity, antimicrobial peptides activate complement, chemoattract cells (e.g., monocytes, macrophages, T cells, neutrophils, immature dendritic cells, and mast cells), enhance phagocytosis, and modulate the production of chemokines and proinflammatory cytokines in other cells. At local sites of initiation, antimicrobial peptides can act as opsonins to enhance phagocytosis by monocytes and phagocytes and can activate cells. In the latter, for example, treatment of osteoblasts and osteoblast-like MG63 cells with human beta-defensin (HBD)2 increases their proliferation rates. Treatment of osteoblast-like MG63 cells with HBD2 and HBD3 increases transcript levels of osteogenic markers for differentiation, increases antileukoprotease (ALP) levels, and enhances mineralized nodule formation. To facilitate adaptive immunity, antimicrobial peptides assist the uptake of antigens by monocytes or other antigen-presenting cells and later direct the process toward a Th1 or Th2 adaptive immune response. More commonly though, antimicrobial peptides induce a mixed response characterized by Th1-/Th2-specific antibodies and Th1/Th2 cytokines from antigen-exposed splenocytes of immunized animals. Finally, antimicrobial peptides can be detected in the margins around both oral and cutaneous wounds, and there is growing evidence to suggest they also play a dynamic role in wound healing by improving wound angiogenesis, vascularization, and reepithelialization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • An LL, Yang YH, Ma XT, Lin YM, Li G, Song YH, Wu KF (2005) LL-37 enhances adaptive antitumor immune response in a murine model when genetically fused with M-CSFR (J6-1) DNA vaccine. Leuk Res 29(5):535–543

    Article  CAS  PubMed  Google Scholar 

  • Barabas N, Rohrl J, Holler E, Hehlgans T (2013) Beta-defensins activate macrophages and synergize in pro-inflammatory cytokine expression induced by TLR ligands. Immunobiology 218(7):1005–1011

    Article  CAS  PubMed  Google Scholar 

  • Befus AD, Mowat C, Gilchrist M, Hu J, Solomon S, Bateman A (1999) Neutrophil defensins induce histamine secretion from mast cells: mechanisms of action. J Immunol 163(2):947–953

    CAS  PubMed  Google Scholar 

  • Biragyn A (2005) Defensins – non-antibiotic use for vaccine development. Curr Protein Pept Sci 6(1):53–60

    Article  CAS  PubMed  Google Scholar 

  • Biragyn A, Surenhu M, Yang D, Ruffini PA, Haines BA, Klyushnenkova E, Oppenheim JJ, Kwak LW (2001) Mediators of innate immunity that target immature, but not mature, dendritic cells induce antitumor immunity when genetically fused with nonimmunogenic tumor antigens. J Immunol 167(11):6644–6653

    Article  CAS  PubMed  Google Scholar 

  • Biragyn A, Ruffini PA, Leifer CA, Klyushnenkova E, Shakhov A, Chertov O, Shirakawa AK, Farber JM, Segal DM, Oppenheim JJ, Kwak LW (2002) Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 298(5595):1025–1029

    Article  CAS  PubMed  Google Scholar 

  • Bloom WL, Blake FG (1948) Studies on an antibacterial polypeptide extracted from normal tissues. J Infect Dis 83(2):116–123

    Article  CAS  PubMed  Google Scholar 

  • Bloom WL, Prigmore JR (1952) A method for preparation of antibacterial basic proteins of normal tissues. J Bacteriol 64(6):855–858

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bloom WL, Watson DW et al (1947) Studies on infection with Bacillus anthracis; preparation and characterization of an anthracidal substance from various animal tissues. J Infect Dis 80(1):41–52

    Google Scholar 

  • Borgwardt, D.S. et al. (2014) Histatin 5 binds to Porphyromonas gingivalis hemagglutinin B (HagB) and alters HagB-induced chemokine responses. Sci. Rep. 4, 3904; DOI:10.1038/srep03904

  • Bowdish DM, Hancock RE (2005) Anti-endotoxin properties of cationic host defence peptides and proteins. J Endotoxin Res 11(4):230–236

    Article  PubMed  Google Scholar 

  • Bowdish DM, Davidson DJ, Scott MG, Hancock RE (2005) Immunomodulatory activities of small host defense peptides. Antimicrob Agents Chemother 49(5):1727–1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bramwell VW, Somavarapu S, Outschoorn I, Alpar HO (2003) Adjuvant action of melittin following intranasal immunisation with tetanus and diphtheria toxoids. J Drug Target 11(8-10):525–530

    Article  CAS  PubMed  Google Scholar 

  • Brogden KA, Heidari M, Sacco RE, Palmquist D, Guthmiller JM, Johnson GK, Jia HP, Tack BF, McCray PB (2003) Defensin-induced adaptive immunity in mice and its potential in preventing periodontal disease. Oral Microbiol Immunol 18(2):95–99

    Article  CAS  PubMed  Google Scholar 

  • Brogden KA, Guthmiller JM, Salzet M, Zasloff M (2005) The nervous system and innate immunity: the neuropeptide connection. Nat Immunol 6(6):558–564

    CAS  PubMed  Google Scholar 

  • Brown KL, Poon GF, Birkenhead D, Pena OM, Falsafi R, Dahlgren C, Karlsson A, Bylund J, Hancock RE, Johnson P (2011) Host defense peptide LL-37 selectively reduces proinflammatory macrophage responses. J Immunol 186(9):5497–5505

    Article  CAS  PubMed  Google Scholar 

  • Caccavo D, Pellegrino NM, Altamura M, Rigon A, Amati L, Amoroso A, Jirillo E (2002) Antimicrobial and immunoregulatory functions of lactoferrin and its potential therapeutic application. J Endotoxin Res 8(6):403–417

    CAS  PubMed  Google Scholar 

  • Chaly YV, Paleolog EM, Kolesnikova TS, Tikhonov II, Petratchenko EV, Voitenok NN (2000) Neutrophil alpha-defensin human neutrophil peptide modulates cytokine production in human monocytes and adhesion molecule expression in endothelial cells. Eur Cytokine Netw 11(2):257–266

    CAS  PubMed  Google Scholar 

  • Chertov O, Michiel DF, Xu L, Wang JM, Tani K, Murphy WJ, Longo DL, Taub DD, Oppenheim JJ (1996) Identification of defensin-1, defensin-2, and CAP37/azurocidin as T- cell chemoattractant proteins released from interleukin-8-stimulated neutrophils. J Biol Chem 271(6):2935–2940

    Article  CAS  PubMed  Google Scholar 

  • Chertov O, Yang D, Howard OM, Oppenheim JJ (2000) Leukocyte granule proteins mobilize innate host defenses and adaptive immune responses. Immunol Rev 177:68–78

    Article  CAS  PubMed  Google Scholar 

  • Cole AM, Ganz T, Liese AM, Burdick MD, Liu L, Strieter RM (2001) Cutting edge: IFN-inducible ELR- CXC chemokines display defensin-like antimicrobial activity. J Immunol 167(2):623–627

    Article  CAS  PubMed  Google Scholar 

  • Dietrich DE, Xiao X, Dawson DV, Belanger M, Xie H, Progulske-Fox A, Brogden KA (2008) Human alpha- and beta-defensins bind to immobilized adhesins from Porphyromonas gingivalis. Infect Immun 76(12):5714–5720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunkelberger JR, Song WC (2010) Complement and its role in innate and adaptive immune responses. Cell Res 20(1):34–50

    Article  CAS  PubMed  Google Scholar 

  • Fleischmann J, Selsted ME, Lehrer RI (1985) Opsonic activity of MCP-1 and MCP-2, cationic peptides from rabbit alveolar macrophages. Diagn Microbiol Infect Dis 3(3):233–242

    Article  CAS  PubMed  Google Scholar 

  • Frasca L, Lande R (2012) Role of defensins and cathelicidin LL37 in auto-immune and auto-inflammatory diseases. Curr Pharm Biotechnol 13(10):1882–97. Epub ahead of print

    Google Scholar 

  • Fritz JH, Brunner S, Birnstiel ML, Buschle M, Gabain A, Mattner F, Zauner W (2004) The artificial antimicrobial peptide KLKLLLLLKLK induces predominantly a TH2-type immune response to co-injected antigens. Vaccine 22(25-26):3274–3284

    Article  CAS  PubMed  Google Scholar 

  • Gallo RL, Hooper LV (2012) Epithelial antimicrobial defence of the skin and intestine. Nat Rev Immunol 12(7):503–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Valtanen P, Martinez-Lopez A, Ortega-Villaizan M, Perez L, Coll JM, Estepa A (2014) In addition to its antiviral and immunomodulatory properties, the zebrafish beta-defensin 2 (zfBD2) is a potent viral DNA vaccine molecular adjuvant. Antiviral Res 101:136–147

    Article  CAS  PubMed  Google Scholar 

  • Giesemann T, Guttenberg G, Aktories K (2008) Human alpha-defensins inhibit Clostridium difficile toxin B. Gastroenterology 134(7):2049–2058

    Article  CAS  PubMed  Google Scholar 

  • Gilliet M, Lande R (2008) Antimicrobial peptides and self-DNA in autoimmune skin inflammation. Curr Opin Immunol 20(4):401–407

    Article  CAS  PubMed  Google Scholar 

  • Gough M, Hancock REW, Kelly NM (1996) Antiendotoxin activity of cationic peptide antimicrobial agents. Infect Immun 64(12):4922–4927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greer A, Zenobia C, Darveau RP (2013) Defensins and LL-37: a review of function in the gingival epithelium. Periodontol 2000 63(1):67–79

    Article  PubMed  PubMed Central  Google Scholar 

  • Groot F, Geijtenbeek TB, Sanders RW, Baldwin CE, Sanchez-Hernandez M, Floris R, van Kooyk Y, de Jong EC, Berkhout B (2005) Lactoferrin prevents dendritic cell-mediated human immunodeficiency virus type 1 transmission by blocking the DC-SIGN – gp120 interaction. J Virol 79(5):3009–3015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey LE, Kohlgraf KG, Mehalick LA, Raina M, Recker EN, Radhakrishnan S, Prasad SA, Vidva R, Progulske-Fox A, Cavanaugh JE, Vali S, Brogden KA (2013) Defensin DEFB103 bidirectionally regulates chemokine and cytokine responses to a pro-inflammatory stimulus. Sci Rep 3:1232

    Article  PubMed  PubMed Central  Google Scholar 

  • Heilborn JD, Nilsson MF, Kratz G, Weber G, Sorensen O, Borregaard N, Stahle-Backdahl M (2003) The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium. J Invest Dermatol 120(3):379–389

    Article  CAS  PubMed  Google Scholar 

  • Ichinose M, Asai M, Imai K, Sawada M (1996) Enhancement of phagocytosis by corticostatin I (CSI) in cultured mouse peritoneal macrophages. Immunopharmacology 35(2):103–109

    Article  CAS  PubMed  Google Scholar 

  • Imatani T, Kato T, Minaguchi K, Okuda K (2000) Histatin 5 inhibits inflammatory cytokine induction from human gingival fibroblasts by Porphyromonas gingivalis. Oral Microbiol Immunol 15(6):378–382

    Article  CAS  PubMed  Google Scholar 

  • Inomata M, Into T, Murakami Y (2010) Suppressive effect of the antimicrobial peptide LL-37 on expression of IL-6, IL-8 and CXCL10 induced by Porphyromonas gingivalis cells and extracts in human gingival fibroblasts. Eur J Oral Sci 118(6):574–581

    Article  CAS  PubMed  Google Scholar 

  • Jan MS, Huang YH, Shieh B, Teng RH, Yan YP, Lee YT, Liao KK, Li C (2006) CC chemokines induce neutrophils to chemotaxis, degranulation, and alpha-defensin release. J Acquir Immune Defic Syndr 41(1):6–16

    Article  CAS  PubMed  Google Scholar 

  • Kiatsurayanon C, Niyonsaba F, Smithrithee R, Akiyama T, Ushio H, Hara M, Okumura K, Ikeda S, Ogawa H (2014) Host defense (Antimicrobial) peptide, human beta-defensin-3, improves the function of the epithelial tight-junction barrier in human keratinocytes. J Invest Dermatol 134(8):2163–2173

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Gajendran N, Mittrucker HW, Weiwad M, Song YH, Hurwitz R, Wilmanns M, Fischer G, Kaufmann SH (2005) Human {alpha}-defensins neutralize anthrax lethal toxin and protect against its fatal consequences. Proc Natl Acad Sci U S A 102(13):4830–4835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim C, Slavinskaya Z, Merrill AR, Kaufmann SH (2006) Human alpha-defensins neutralize toxins of the mono-ADP-ribosyltransferase family. Biochem J 399(2):225–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohlgraf KG, Ackermann A, Lu X, Burnell K, Belanger M, Cavanaugh JE, Xie H, Progulske-Fox A, Brogden KA (2010) Defensins attenuate cytokine responses yet enhance antibody responses to Porphyromonas gingivalis adhesins in mice. Future Microbiol 5(1):115–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraus D, Deschner J, Jager A, Wenghoefer M, Bayer S, Jepsen S, Allam JP, Novak N, Meyer R, Winter J (2012) Human beta-defensins differently affect proliferation, differentiation, and mineralization of osteoblast-like MG63 cells. J Cell Physiol 227(3):994–1003

    Article  CAS  PubMed  Google Scholar 

  • Kurosaka K, Chen Q, Yarovinsky F, Oppenheim JJ, Yang D (2005) Mouse cathelin-related antimicrobial peptide chemoattracts leukocytes using formyl peptide receptor-like 1/mouse formyl peptide receptor-like 2 as the receptor and acts as an immune adjuvant. J Immunol 174(10):6257–6265

    Article  CAS  PubMed  Google Scholar 

  • Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH, Homey B, Cao W, Wang YH, Su B, Nestle FO, Zal T, Mellman I, Schroder JM, Liu YJ, Gilliet M (2007) Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449(7162):564–569

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Jun HK, Lee HR, Chung CP, Choi BK (2010) Antibacterial and lipopolysaccharide (LPS)-neutralising activity of human cationic antimicrobial peptides against periodontopathogens. Int J Antimicrob Agents 35(2):138–145

    Article  CAS  PubMed  Google Scholar 

  • Li D, Wang W, Shi HS, Fu YJ, Chen X, Chen XC, Liu YT, Kan B, Wang YS (2014) Gene therapy with beta-defensin 2 induces antitumor immunity and enhances local antitumor effects. Hum Gene Ther 25(1):63–72

    Article  CAS  PubMed  Google Scholar 

  • Lillard JW Jr, Boyaka PN, Chertov O, Oppenheim JJ, McGhee JR (1999) Mechanisms for induction of acquired host immunity by neutrophil peptide defensins. Proc Natl Acad Sci U S A 96(2):651–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Yu H, Gu Y, Xin A, Zhang Y, Diao H, Lin D (2013a) Human beta-defensin DEFB126 is capable of inhibiting LPS-mediated inflammation. Appl Microbiol Biotechnol 97(8):3395–3408

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Du X, Chen J, Hu L, Chen L (2013b) The induction expression of human beta-defensins in gingival epithelial cells and fibroblasts. Arch Oral Biol 58(10):1415–1421

    Article  CAS  PubMed  Google Scholar 

  • Lu W, de Leeuw E (2013) Pro-inflammatory and pro-apoptotic properties of Human Defensin 5. Biochem Biophys Res Commun 436(3):557–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma XT, Xu B, An LL, Dong CY, Lin YM, Shi Y, Wu KF (2006) Vaccine with beta-defensin 2-transduced leukemic cells activates innate and adaptive immunity to elicit potent antileukemia responses. Cancer Res 66(2):1169–1176

    Article  CAS  PubMed  Google Scholar 

  • Martin SF (2014) Adaptation in the innate immune system and heterologous innate immunity. Cell Mol Life Sci 71:4115–4130

    Article  CAS  PubMed  Google Scholar 

  • Miles K, Clarke DJ, Lu W, Sibinska Z, Beaumont PE, Davidson DJ, Barr TA, Campopiano DJ, Gray M (2009) Dying and necrotic neutrophils are anti-inflammatory secondary to the release of alpha-defensins. J Immunol 183(3):2122–2132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molhoek EM, den Hertog AL, de Vries AM, Nazmi K, Veerman EC, Hartgers FC, Yazdanbakhsh M, Bikker FJ, van der Kleij D (2009) Structure-function relationship of the human antimicrobial peptide LL-37 and LL-37 fragments in the modulation of TLR responses. Biol Chem 390(4):295–303

    Article  CAS  PubMed  Google Scholar 

  • Motzkus D, Schulz-Maronde S, Heitland A, Schulz A, Forssmann WG, Jubner M, Maronde E (2006) The novel beta-defensin DEFB123 prevents lipopolysaccharide-mediated effects in vitro and in vivo. FASEB J 20(10):1701–1702

    Article  CAS  PubMed  Google Scholar 

  • Nakatsuji T, Gallo RL (2012) Antimicrobial peptides: old molecules with new ideas. J Invest Dermatol 132(3 Pt 2):887–895

    Article  CAS  PubMed  Google Scholar 

  • Niyonsaba F, Someya A, Hirata M, Ogawa H, Nagaoka I (2001) Evaluation of the effects of peptide antibiotics human beta-defensins- 1/-2 and LL-37 on histamine release and prostaglandin D(2) production from mast cells. Eur J Immunol 31(4):1066–1075

    Article  CAS  PubMed  Google Scholar 

  • Niyonsaba F, Ushio H, Nakano N, Ng W, Sayama K, Hashimoto K, Nagaoka I, Okumura K, Ogawa H (2007) Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J Invest Dermatol 127(3):594–604

    Article  CAS  PubMed  Google Scholar 

  • Owen SM, Rudolph D, Wang W, Cole AM, Sherman MA, Waring AJ, Lehrer RI, Lal RB (2004a) A theta-defensin composed exclusively of D-amino acids is active against HIV-1. J Pept Res 63(6):469–476

    Article  CAS  PubMed  Google Scholar 

  • Owen SM, Rudolph DL, Wang W, Cole AM, Waring AJ, Lal RB, Lehrer RI (2004b) RC-101, a retrocyclin-1 analogue with enhanced activity against primary HIV type 1 isolates. AIDS Res Hum Retroviruses 20(11):1157–1165

    Article  CAS  PubMed  Google Scholar 

  • Petrov V, Funderburg N, Weinberg A, Sieg S (2013) Human beta defensin-3 induces chemokines from monocytes and macrophages: diminished activity in cells from HIV-infected persons. Immunology 140(4):413–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pingel L, Lu X, Brogden KA (2007) Antimicrobial peptides as mucosal adjuvants. In: Brogden KA, Stanton TB, Cornick N et al (eds) Virulence mechanisms of bacterial pathogens, 4th edn. ASM Press, Washington, DC, pp 281–295

    Google Scholar 

  • Pingel LC, Kohlgraf KG, Hansen CJ, Eastman CG, Dietrich DE, Burnell KK, Srikantha RN, Xiao X, Belanger M, Progulske-Fox A, Cavanaugh JE, Guthmiller JM, Johnson GK, Joly S, Kurago ZB, Dawson DV, Brogden KA (2008) Human beta-defensin 3 binds to hemagglutinin B (rHagB), a non-fimbrial adhesin from Porphyromonas gingivalis, and attenuates a pro-inflammatory cytokine response. Immunol Cell Biol 86(8):643–649

    Article  CAS  PubMed  Google Scholar 

  • Prohaszka Z, Nemet K, Csermely P, Hudecz F, Mezo G, Fust G (1997) Defensins purified from human granulocytes bind C1q and activate the classical complement pathway like the transmembrane glycoprotein gp41 of HIV-1. Mol Immunol 34(11):809–816

    Article  CAS  PubMed  Google Scholar 

  • Ramos R, Silva JP, Rodrigues AC, Costa R, Guardao L, Schmitt F, Soares R, Vilanova M, Domingues L, Gama M (2011) Wound healing activity of the human antimicrobial peptide LL37. Peptides 32(7):1469–1476

    Article  CAS  PubMed  Google Scholar 

  • Rehaume LM, Hancock RE (2008) Neutrophil-derived defensins as modulators of innate immune function. Crit Rev Immunol 28(3):185–200

    Article  CAS  PubMed  Google Scholar 

  • Schaal JB, Tran D, Tran P, Osapay G, Trinh K, Roberts KD, Brasky KM, Tongaonkar P, Ouellette AJ, Selsted ME (2012) Rhesus macaque theta defensins suppress inflammatory cytokines and enhance survival in mouse models of bacteremic sepsis. PLoS One 7(12):e51337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott MG, Rosenberger CM, Gold MR, Finlay BB, Hancock RE (2000) An alpha-helical cationic antimicrobial peptide selectively modulates macrophage responses to lipopolysaccharide and directly alters macrophage gene expression. J Immunol 165(6):3358–3365

    Article  CAS  PubMed  Google Scholar 

  • Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock RE (2002) The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J Immunol 169(7):3883–3891

    Article  CAS  PubMed  Google Scholar 

  • Scott A, Weldon S, Buchanan PJ, Schock B, Ernst RK, McAuley DF, Tunney MM, Irwin CR, Elborn JS, Taggart CC (2011) Evaluation of the ability of LL-37 to neutralise LPS in vitro and ex vivo. PLoS One 6(10):e26525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semple F, Dorin JR (2012) beta-defensins: multifunctional modulators of infection, inflammation and more? J Innate Immun 4(4):337–348

    Article  CAS  PubMed  Google Scholar 

  • Semple F, Webb S, Li HN, Patel HB, Perretti M, Jackson IJ, Gray M, Davidson DJ, Dorin JR (2010) Human beta-defensin 3 has immunosuppressive activity in vitro and in vivo. Eur J Immunol 40(4):1073–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, Aono S, Lu W, Ouellette AJ, Hu X, Ji Y, Wang L, Lenz S, van Ginkel FW, Liles M, Dykstra C, Morrison EE, Elson CO (2007) A novel role for defensins in intestinal homeostasis: regulation of IL-1beta secretion. J Immunol 179(2):1245–1253

    Article  CAS  PubMed  Google Scholar 

  • Sinno H, Prakash S (2013) Complements and the wound healing cascade: an updated review. Plast Surg Int 2013:146764

    PubMed  PubMed Central  Google Scholar 

  • Skarnes RC, Watson DW (1957) Antimicrobial factors of normal tissues and fluids. Bacteriol Rev 21(4):273–294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suphasiriroj W, Mikami M, Shimomura H, Sato S (2013) Specificity of antimicrobial peptide LL-37 to neutralize periodontopathogenic lipopolysaccharide activity in human oral fibroblasts. J Periodontol 84(2):256–264

    Article  CAS  PubMed  Google Scholar 

  • Tani K, Murphy WJ, Chertov O, Salcedo R, Koh CY, Utsunomiya I, Funakoshi S, Asai O, Herrmann SH, Wang JM, Kwak LW, Oppenheim JJ (2000) Defensins act as potent adjuvants that promote cellular and humoral immune responses in mice to a lymphoma idiotype and carrier antigens. Int Immunol 12(5):691–700

    Article  CAS  PubMed  Google Scholar 

  • Territo MC, Ganz T, Selsted ME, Lehrer R (1989) Monocyte-chemotactic activity of defensins from human neutrophils. J Clin Invest 84(6):2017–2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tewary P, de la Rosa G, Sharma N, Rodriguez LG, Tarasov SG, Howard OM, Shirota H, Steinhagen F, Klinman DM, Yang D, Oppenheim JJ (2013) beta-Defensin 2 and 3 promote the uptake of self or CpG DNA, enhance IFN-alpha production by human plasmacytoid dendritic cells, and promote inflammation. J Immunol 191(2):865–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van den Berg RH, Faber-Krol MC, van Wetering S, Hiemstra PS, Daha MR (1998) Inhibition of activation of the classical pathway of complement by human neutrophil defensins. Blood 92(10):3898–3903

    PubMed  Google Scholar 

  • Van Hemert JR, Recker EN, Dietrich D, Progulske-Fox A, Kurago ZB, Walters KS, Cavanaugh JE, Brogden KA (2012) Human beta-defensin-3 alters, but does not inhibit, the binding of Porphyromonas gingivalis haemagglutinin B to the surface of human dendritic cells. Int J Antimicrob Agents 40(1):75–79

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Wetering S, MannesseLazeroms SPG, Dijkman JH, Hiemstra PS (1997) Effect of neutrophil serine proteinases and defensins on lung epithelial cells: modulation of cytotoxicity and IL-8 production. J Leukoc Biol 62(2):217–226

    PubMed  Google Scholar 

  • Vemula SV, Amen O, Katz JM, Donis R, Sambhara S, Mittal SK (2013) Beta-defensin 2 enhances immunogenicity and protection of an adenovirus-based H5N1 influenza vaccine at an early time. Virus Res 178(2):398–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vordenbaumen S, Fischer-Betz R, Timm D, Sander O, Chehab G, Richter J, Bleck E, Schneider M (2010) Elevated levels of human beta-defensin 2 and human neutrophil peptides in systemic lupus erythematosus. Lupus 19(14):1648–1653

    Article  CAS  PubMed  Google Scholar 

  • Walters SM, Dubey VS, Jeffrey NR, Dixon DR (2010) Antibiotic-induced Porphyromonas gingivalis LPS release and inhibition of LPS-stimulated cytokines by antimicrobial peptides. Peptides 31(9):1649–1653

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Cole AM, Hong T, Waring AJ, Lehrer RI (2003) Retrocyclin, an antiretroviral theta-defensin, is a lectin. J Immunol 170(9):4708–4716

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Mulakala C, Ward SC, Jung G, Luong H, Pham D, Waring AJ, Kaznessis Y, Lu W, Bradley KA, Lehrer RI (2006) Retrocyclins kill bacilli and germinating spores of Bacillus anthracis and inactivate anthrax lethal toxin. J Biol Chem 281(43):32755–32764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warnke PH, Voss E, Russo PA, Stephens S, Kleine M, Terheyden H, Liu Q (2013) Antimicrobial Peptide coating of dental implants: biocompatibility assessment of recombinant human Beta defensin-2 for human cells. Int J Oral Maxillofac Implants 28(4):982–988

    Article  PubMed  Google Scholar 

  • Yamashita T, Saito K (1989) Purification, primary structure, and biological activity of guinea pig neutrophil cationic peptides. Infect Immun 57(8):2405–2409

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang D, Oppenheim JJ (2004) Multiple functions of antimicrobial peptides in host immunity. In: Devine DA, Hancock REW (eds) Mammalian host defense peptides. Cambridge University Press, Cambridge, pp 39–68

    Google Scholar 

  • Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, Anderson M, Schroder JM, Wang JM, Howard OM, Oppenheim JJ (1999) b-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286(5439):525–528

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Chen Q, Chertov O, Oppenheim JJ (2000) Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells. J Leukoc Biol 68(1):9–14

    CAS  PubMed  Google Scholar 

  • Yang D, Chertov O, Oppenheim JJ (2001) The role of mammalian antimicrobial peptides and proteins in awakening of innate host defenses and adaptive immunity. Cell Mol Life Sci 58(7):978–989

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Biragyn A, Kwak LW, Oppenheim JJ (2002) Mammalian defensins in immunity: more than just microbicidal. Trends Immunol 23(6):291–296

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Chen Q, Hoover DM, Staley P, Tucker KD, Lubkowski J, Oppenheim JJ (2003) Many chemokines including CCL20/MIP-3alpha display antimicrobial activity. J Leukoc Biol 74(3):448–455

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Biragyn A, Hoover DM, Lubkowski J, Oppenheim JJ (2004) Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu Rev Immunol 22:181–215

    Article  PubMed  Google Scholar 

  • Yeom M, Park J, Lee B, Choi SY, Kim KS, Lee H, Hahm DH (2011) Lactoferrin inhibits the inflammatory and angiogenic activation of bovine aortic endothelial cells. Inflamm Res 60(5):475–482

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Dong J, Gu Y, Liu H, Xin A, Shi H, Sun F, Zhang Y, Lin D, Diao H (2013) The novel human beta-defensin 114 regulates lipopolysaccharide (LPS)-mediated inflammation and protects sperm from motility loss. J Biol Chem 288(17):12270–12282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Alan Brogden PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brogden, K.A., Bates, A.M., Fischer, C.L. (2016). Antimicrobial Peptides in Host Defense: Functions Beyond Antimicrobial Activity. In: Harder, J., Schröder, JM. (eds) Antimicrobial Peptides. Birkhäuser Advances in Infectious Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-24199-9_9

Download citation

Publish with us

Policies and ethics