Skip to main content

Optimizing Polarization Dependent Hard X-ray Photoemission Experiments for Solids

  • Chapter
  • First Online:
Hard X-ray Photoelectron Spectroscopy (HAXPES)

Abstract

Polarization dependent hard X-ray photoemission (HAXPES) experiments are a very powerful tool to identify the nature of the orbitals contributing to the valence band. To optimize this type of experiments we have set up a photoelectron spectroscopy system consisting of two electron energy analyzers mounted such that one detects the photoelectrons propagating parallel to the polarization vector (E) of the light and the other perpendicular. This method has the advantage over using phase retarders (to rotate the E-vector of the light) that the full intensity and full polarization of the light is available for the experiments. Using NiO as an example, we are able to identify reliably the Ni 3d spectral weight of the valence band and at the same time demonstrate the importance of the Ni 4s for the chemical stability of the compound. We have also discovered the limitations of this type of polarization dependent experiments: the polarization dependence is less than expected on the basis of calculations for free atoms and we can ascribe this incompleteness of the polarization dependence to the presence of appreciable side-scattering effects of the outgoing electrons, even at these high kinetic energies in the 6–8 keV range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Sekiyama, J. Yamaguchi, A. Higashiya, M. Obara, H. Sugiyama, M.Y. Kimura, S. Suga, S. Imada, I.A. Nekrasov, M. Yabashi, K. Tamasaku, T. Ishikawa, New J. Phys. 12(4), 043045 (2010). doi:10.1088/1367-2630/12/4/043045

    Article  ADS  Google Scholar 

  2. S. Ouardi, G.H. Fecher, X. Kozina, G. Stryganyuk, B. Balke, C. Felser, E. Ikenaga, T. Sugiyama, N. Kawamura, M. Suzuki, K. Kobayashi, Phys. Rev. Lett. 107, 036402 (2011). doi:10.1103/PhysRevLett.107.036402

    Article  ADS  Google Scholar 

  3. Y. Nakatsu, A. Sekiyama, S. Imada, Y. Okamoto, S. Niitaka, H. Takagi, A. Higashiya, M. Yabashi, K. Tamasaku, T. Ishikawa, S. Suga, Phys. Rev. B 83, 115120 (2011). doi:10.1103/PhysRevB.83.115120

    Article  ADS  Google Scholar 

  4. S. Ouardi, G.H. Fecher, C. Felser, J. Electron Spectrosc. 190, 249 (2013). doi:10.1016/j.elspec.2013.09.001

    Article  Google Scholar 

  5. J. Weinen, T.C. Koethe, C.F. Chang, S. Agrestini, D. Kasinathan, Y.F. Liao, H. Fujiwara, C. Schüßler-Langeheine, F. Strigari, T. Haupricht, G. Panaccione, F. Offi, G. Monaco, S. Huotari, K.D. Tsuei, L.H. Tjeng, J. Electron Spectrosc. Rel. Phen. 198, 6 (2015). doi:http://dx.doi.org/10.1016/j.elspec.2014.11.003. URL:http://www.sciencedirect.com/science/article/pii/S0368204814002370

    Google Scholar 

  6. F. Offi, A. Fondacaro, G. Paolicelli, A. De Luisa, G. Stefani, Nucl. Instrum. Methods Phys. Res., Sect. A 550(12), 454 (2005). doi:http://dx.doi.org/10.1016/j.nima.2005.04.086. URL:http://www.sciencedirect.com/science/article/pii/S0168900205012544

    Google Scholar 

  7. M. Oku, H. Tokuda, K. Hirokawa, J. Electron Spectrosc. 53(4), 201 (1991). doi:10.1016/0368-2048(91)85039-V

    Article  Google Scholar 

  8. A.E. Bocquet, T. Mizokawa, T. Saitoh, H. Namatame, A. Fujimori, Phys. Rev. B 46, 3771 (1992). doi:10.1103/PhysRevB.46.3771

    Article  ADS  Google Scholar 

  9. S. Uhlenbrock, C. Scharfschwerdt, M. Neumann, G. Illing, H.J. Freund, J. Phys.: Condens. Mat. 4(40), 7973 (1992). URL:http://stacks.iop.org/0953-8984/4/i=40/a=009

  10. L. Sangaletti, L.E. Depero, F. Parmigiani, Solid State Commun. 103(7), 421 (1997). doi:10.1016/S0038-1098(97)00185-3

    Google Scholar 

  11. S. Altieri, L.H. Tjeng, A. Tanaka, G.A. Sawatzky, Phys. Rev. B 61, 13403 (2000). doi:10.1103/PhysRevB.61.13403

    Article  ADS  Google Scholar 

  12. M. Taguchi, M. Matsunami, Y. Ishida, R. Eguchi, A. Chainani, Y. Takata, M. Yabashi, K. Tamasaku, Y. Nishino, T. Ishikawa, Y. Senba, H. Ohashi, S. Shin, Phys. Rev. Lett. 100, 206401 (2008). doi:10.1103/PhysRevLett.100.206401

    Article  ADS  Google Scholar 

  13. M.B. Trzhaskovskaya, V.I. Nefedov, V.G. Yarzhemsky, Atom. Data Nucl. Data 77(1), 97 (2001). doi:10.1006/adnd.2000.0849

    Google Scholar 

  14. M.B. Trzhaskovskaya, V.K. Nikulin, V.I. Nefedov, V.G. Yarzhemsky, Atom. Data Nucl. Data 92(2), 245 (2006). doi:10.1016/j.adt.2005.12.002

    Google Scholar 

  15. T.J.T. Haupricht, Transition metal impurities in wide bandgap oxides: fundamental model systems for strongly correlated oxides. Ph.D. thesis, Universität zu Köln (2011)

    Google Scholar 

  16. J. van Elp, H. Eskes, P. Kuiper, G.A. Sawatzky, Phys. Rev. B 45, 1612 (1992). doi:10.1103/PhysRevB.45.1612

    Article  ADS  Google Scholar 

  17. A. Fujimori, F. Minami, Phys. Rev. B 30, 957 (1984). doi:10.1103/PhysRevB.30.957

    Article  ADS  Google Scholar 

  18. G.A. Sawatzky, J.W. Allen, Phys. Rev. Lett. 53, 2339 (1984). doi:10.1103/PhysRevLett.53.2339

    Article  ADS  Google Scholar 

  19. K. Koepernik, H. Eschrig, Phys. Rev. B 59, 1743 (1999). doi:10.1103/PhysRevB.59.1743

    Article  ADS  Google Scholar 

  20. J.C. Woicik, E.J. Nelson, L. Kronik, M. Jain, J.R. Chelikowsky, D. Heskett, L.E. Berman, G.S. Herman, Phys. Rev. Lett. 89, 077401 (2002). doi:10.1103/PhysRevLett.89.077401. URL:http://link.aps.org/doi/10.1103/PhysRevLett.89.077401

  21. K. Kobayashi, Y. Takata, T. Yamamoto, J.J. Kim, H. Makino, K. Tamasaku, M. Yabashi, D. Miwa, T. Ishikawa, S. Shin, T. Yao, Jpn J. Appl. Phys. 43(8A), L1029 (2004). URL:http://stacks.iop.org/1347-4065/43/i=8A/a=L1029

  22. G. Panaccione, G. Cautero, M. Cautero, A. Fondacaro, M. Grioni, P. Lacovig, G. Monaco, F. Offi, G. Paolicelli, M. Sacchi, N. Stojić, G. Stefani, R. Tommasini, P. Torelli, J. Phys. Condens. Matter 17(17), 2671 (2005). URL:http://stacks.iop.org/0953-8984/17/i=17/a=015

  23. D.J. Payne, R.G. Egdell, G. Paolicelli, F. Offi, G. Panaccione, P. Lacovig, G. Monaco, G. Vanko, A. Walsh, G.W. Watson, J. Guo, G. Beamson, P.A. Glans, T. Learmonth, K.E. Smith, Phys. Rev. B 75, 153102 (2007). doi:10.1103/PhysRevB.75.153102. URL:http://link.aps.org/doi/10.1103/PhysRevB.75.153102

  24. J.C. Woicik, M. Yekutiel, E.J. Nelson, N. Jacobson, P. Pfalzer, M. Klemm, S. Horn, L. Kronik, Phys. Rev. B 76, 165101 (2007). doi:10.1103/PhysRevB.76.165101. URL:http://link.aps.org/doi/10.1103/PhysRevB.76.165101

  25. K. Kobayashi, Nuclear instruments and methods in physics research section a: accelerators, spectrometers, detectors and associated equipment 601(12), 32 (2009). doi:http://dx.doi.org/10.1016/j.nima.2008.12.188. URL:http://www.sciencedirect.com/science/article/pii/S016890020802010X. Special issue in honour of Prof. Kai Siegbahn

    Google Scholar 

  26. L.H. Tjeng, A.R. Vos, G.A. Sawatzky, Surf. Sci. 235(23), 269 (1990). doi:10.1016/0039-6028(90)90802-F

    Google Scholar 

  27. U. Schönberger, F. Aryasetiawan, Phys. Rev. B 52, 8788 (1995). doi:10.1103/PhysRevB.52.8788. Also see the references therein

    Google Scholar 

  28. A.X. Gray, C. Papp, S. Ueda, B. Balke, Y. Yamashita, L. Plucinski, J. Minár, J. Braun, E.R. Ylvisaker, C.M. Schneider, W.E. Pickett, H. Ebert, K. Kobayashi, C.S. Fadley, Nat. Mater. 10(10), 759 (2011). doi:10.1038/nmat3089

    Google Scholar 

  29. M.A. Vicente Alvarez, H. Ascolani, G. Zampieri, Phys. Rev. B 54, 14703 (1996). doi:10.1103/PhysRevB.54.14703

    Google Scholar 

  30. N.J. Shevchik, Phys. Rev. B 16, 3428 (1977). doi:10.1103/PhysRevB.16.3428

    Article  ADS  Google Scholar 

  31. R.C. White, C.S. Fadley, M. Sagurton, Z. Hussain, Phys. Rev. B 34, 5226 (1986). doi:10.1103/PhysRevB.34.5226

    Article  ADS  Google Scholar 

  32. T.C. Koethe, J.C. Cezar, N.B. Brookes, Z. Hu, L.H. Tjeng, unpublished

    Google Scholar 

Download references

Acknowledgement

We would like to thank G. Panaccione for valuable discussions. We acknowledge Lucie Hamdan and Thomas Mende for their skillful technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft through SFB 608 and FOR 1346.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. H. Tjeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Weinen, J. et al. (2016). Optimizing Polarization Dependent Hard X-ray Photoemission Experiments for Solids. In: Woicik, J. (eds) Hard X-ray Photoelectron Spectroscopy (HAXPES). Springer Series in Surface Sciences, vol 59. Springer, Cham. https://doi.org/10.1007/978-3-319-24043-5_11

Download citation

Publish with us

Policies and ethics