Skip to main content

Free Piston Shock Tunnels HEG, HIEST, T4 and T5

  • Chapter
  • First Online:
Book cover Experimental Methods of Shock Wave Research

Part of the book series: Shock Wave Science and Technology Reference Library ((SHOCKWAVES,volume 9))

Abstract

At hypersonic flight the kinetic energy of the flow is large enough that high temperature effects such as vibrational excitation or dissociation of the fluid molecules occur. Due to the extremely high power requirement and the severe flow environment, the required test conditions can only be achieved in ground based impulse facilities. The most successful types of facility which are able to generate high enthalpy and high pressure hypersonic flows are shock tunnels and shock expansion tunnels. The principle of operation of these facilities is to store the energy over a long period of time, therefore reducing the necessary power requirement and subsequently releasing the stored energy rapidly. In free piston driven shock tunnels, the conventional driver of a shock tunnel is replaced by a free piston driver. This concept was proposed by Prof. R.J. Stalker in the 1960th and the facilities are referred to as Stalker tubes. In the present article, four major Stalker tubes, the High Enthalpy Shock Tunnel Göttingen, HEG, at the German Aerospace Center, the High Enthalpy Shock Tunnel, HIEST, at the Japan Aerospace Exploration Agency, Kakuda, T4 at The University of Queensland, Brisbane, Australia and T5 at the Graduate Aeronautical Laboratories, California Institute of Technology, United States are presented. In addition to facility overviews, selected research activities are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adam, P.H.: Enthalpy effects on hypervelocity boundary layers. PhD Thesis, California Institute of Technology (1997)

    Google Scholar 

  2. Adam, P.H, Hornung, H.G.: Enthalpy effects on hypervelocity boundary-layer transition: Ground test and flight test data. J. Spacecr. Rockets 34(5), 614–619 (1997)

    Google Scholar 

  3. Anderson, J.D.: Hypersonic and high-temperature gas dynamics, 2nd edn. American Institute of Aeronautics and Astronautics, Reston (2006)

    Book  Google Scholar 

  4. Barth, J.E., Wheatley, V., Smart, M.K.: Hypersonic turbulent boundary-layer fuel injection and combustion: skin-friction reduction mechanisms. AIAA J. 51(9), 2147–2157 (2013). doi:10.2514/1.J052041, 2013

    Google Scholar 

  5. Bertin, J.J., Stetson, K.F., Bouslog, S.A., Caram, J.M.: Effect of isolated roughness elements on boundary-layer transition for shuttle orbiter. J. Spacec. Rocket 34, 4 (1997)

    Google Scholar 

  6. Böhrk, H., Wartemann, V., Eggers, T., Martinez Schramm, J., Wagner, A., Hannemann, K.: Shock tunnel testing of the transpiration-cooled heat shield experiment AKTiV, AIAA 2012-5935. In: Proceedings 18th AIAA/3AF International Space Planes and Hypersonic Systems And Technology Conference, Tours, France, 24–28 Sept 2012

    Google Scholar 

  7. Boyce, R.R., Takahashi, M., Stalker, R.J.: Mass spectrometric measurements of driver gas arrival in the T4 free-piston shock-tunnel. Shock Waves 14(5/6), 371–378 (2005). doi:10.1007/s00193-005-0276-3

    Article  Google Scholar 

  8. Brieschenk, S., Gehre, R., Wheatley, V., Boyce, R.: Fluorescence studies of jet mixing in a hypersonic flow. In: Proceedings of the 29th International Symposium on Shock Waves, 14–19 July 2013

    Google Scholar 

  9. Brieschenk, S., Lorrain, P., McIntyre, T.J., Boyce, R.R.: Chemiluminescence imaging in a radical-farming scramjet. In: Proceedings of the XXI International Symposium on Air Breathing Engines (ISABE 2013), pp. 1403–1408 (2013)

    Google Scholar 

  10. Capser, K.M., Beresh, S.J., Henfling, J.F., Spillers, R.W., Pruett, B., Schneider, S.P.: Hypersonic wind-tunnel measurements of boundary layer pressure fluctuations. AIAA 2009-4054, 39th AIAA Fluid Dynamics Conference, San Antonio, Texas, 22–25 June 2009

    Google Scholar 

  11. Cary Jr, A.M., Hefner, J.N.: Film-cooling effectiveness and skin friction in hypersonic turbulent flow. AIAA J. 10(9), 1188–1193 (1972)

    Article  Google Scholar 

  12. Chan, W.Y.K., Jacobs, P.A., Mee, D.J.: Suitability of the k-ω turbulence model for scramjet flowfield simulations. Int. J. Numer. Meth. Fluids 70(4), 493–514 (2012). doi:10.1002/fld.2699

    Article  MathSciNet  Google Scholar 

  13. Chan, W.Y.K., Mee, D.J., Smart, M.K., Turner, J.C.: Effects of flow disturbances from cross-stream fuel injection on the drag reduction by boundary layer combustion. In: AIAA 2012-5889, presented at the 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference, Tours, France (2012), 24–28 Sept 2012

    Google Scholar 

  14. Chan, W.Y.K.: Effects of flow non-uniformities on the drag reduction by boundary layer combustion. PhD Thesis, The University of Queensland, Brisbane. Australia (2012)

    Google Scholar 

  15. Craddock, C.S.: Design of the axisymmetric HyShot nozzle for T4, Research Report 02/2000. Department of Mechanical Engineering, The University of Queensland (2000)

    Google Scholar 

  16. Davies, L., Wilson, J.L.: Influence of reflected shock and boundary-layer interaction on shock-tube flows. Phys. Fluids (Supplement I), l-37–1-43 (1969)

    Google Scholar 

  17. Detra, R.W., Kemp, N.H., Riddell, F.R.: Addendum to heat transfer to satellite vehicles reentering the atmosphere. Jet Propuls. 27(12), 1256–1257 (1957)

    Google Scholar 

  18. Doherty, L.J.: Experimental investigation of an airframe integrated 3-D scramjet at a Mach 10 flight condition. PhD Thesis, The University of Queensland (2014)

    Google Scholar 

  19. Doherty, L.J., Chan, W.Y.K., Zander, F., Jacobs, P.A., Gollan, R.J., Kirchhartz, R.M.: NENZFR: Non-Equilibrium Nozzle Flow, Reloaded, Division of Mechanical Engineering Report 2012/08, Brisbane. School of Mechanical and Mining Engineering, The University of Queensland, Australia (2012)

    Google Scholar 

  20. Dunn, M.G., Kang, S.W.: Theoretical and experimental studies of reentry plasmas. NASA CR-2232 (1973)

    Google Scholar 

  21. Edney, B.E.: Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging shock. FFA Rep. 115 (1968)

    Google Scholar 

  22. Edney, B.E.: Effects of shock impingement on the heat transfer around blunt bodies. AIAA J. 6, 15–21 (1968)

    Article  Google Scholar 

  23. Eitelberg, G., McIntyre, T.J., Beck,W.H., Lacey, J.: High Enthalpy Shock Tunnel in Göttingen. AIAA 92-3955 (1992)

    Google Scholar 

  24. Fedorov, A., Kozlov, V., Shiplyuk, A., Maslov, A., Malmuth, N.: Stability of hypersonic boundary layer on porous wall with regular microstructure. AIAA J. 44(8), 1866–1871 (2006)

    Google Scholar 

  25. Fedorov, A.V., Malmuth, N.D., Rasheed, A., Hornung, H.G.: Stabilization of hypersonic boundary layers by porous coatings. AIAA J. 39(4), 605–610 (2001)

    Article  Google Scholar 

  26. Fujii, K.: Experiment of the two-dimensional roughness effect on hypersonic boundary-layer transition. J. Spacecr. Rocket 43(4), (2006)

    Google Scholar 

  27. Gerhold, T., Friedrich, O., Evans, J., Galle, M.: Calculation of complex three-dimensional configurations employing the DLR-TAU-code. AIAA 1997-0167 (1997)

    Google Scholar 

  28. Germain, P., Hornung, H.G.: Transition on a slender cone in hypervelocity flow. Exp. Fluids 22, 183–190 (1997)

    Article  Google Scholar 

  29. Goyne, C.P., Stalker, R.J., Paull, A.: Transducer for direct measurement of skin friction in hypervelocity impulse facilities. AIAA J. 40(1), 42–49 (2002)

    Article  Google Scholar 

  30. Goyne, C.P., Stalker, R.J., Paull, A., Brescianini, C.P.: Hypervelocity skin-friction reduction by boundary-layer combustion of hydrogen. J. Spacecr. Rocket. 37(6), 740–746 (2000)

    Article  Google Scholar 

  31. Gupta, R.N., Yos, J.M., Thompson, R.A., Lee, K.P.: A Review of Reaction Rates and Thermodynamic and Transport Properties for an 11-Species Air Model for Chemical and Thermal Nonequilibrium Calculations to 30000 K, NASA Reference Publication, No. 1232 (1990)

    Google Scholar 

  32. Hannemann, K., Krek, R., Eitelberg, G., Latest Calibration Results of the HEG Contoured Nozzle. In: Sturtevant, B., Sheperd, J.E., Hornung, H.G. (eds.) Proceedings of the 20th International Symposium on Shock Waves, Pasadena, CA, USA, July 1995, pp. 1575–1580, World Scientific (1996)

    Google Scholar 

  33. Hannemann, K., Schnieder, M., Reimann, B., Martinez Schramm, J.: The influence and delay of driver gas contamination in HEG, AIAA 2000-2593, 21st AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Denver, CO, 19–22 June 2000

    Google Scholar 

  34. Hannemann, K., Martinez Schramm, J., Karl, S., Beck, W.H.: Cylinder Shock Layer Density Profiles Measured in High Enthalpy Flows in HEG, AIAA 2002-2913. 22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference, St. Louis, MO, June 24–28 2002

    Google Scholar 

  35. Hannemann, K.: High Enthalpy Flows in the HEG Shock Tunnel: Experiment and Numerical Rebuilding, AIAA 2003-0978, 41st AIAA Aerospace Sciences Meeting and Exhibit, 6-9 Jan. Reno, Nevada (2003)

    Google Scholar 

  36. Hannemann, K., Martinez Schramm, J.: High enthalpy, high pressure short duration testing of hypersonic flows. In: Tropea, C., Foss, J., Yarin, A. (eds.) Springer Handbook of Experimental Fluid Mechanics, pp. 1081–1125. Springer, Berlin (2007)

    Google Scholar 

  37. Hannemann, K., Martinez Schramm, J., Karl, S.: Recent extensions to the High Enthalpy Shock Tunnel Göttingen (HEG). In: Proceedings of the 2nd International ARA Days “Ten Years after ARD”, Arcachon, France, 21–23 Oct 2008

    Google Scholar 

  38. Hannemann, K., Karl, S., Martinez Schramm, J., Steelant, J.: Methodology of a Combined Ground Based Testing and Numerical Modelling Analysis of Supersonic Combustion Flow Paths, Shock Waves, Vol. 20, No. 5, pp. 353–366. Springer (2010)

    Google Scholar 

  39. Hollis, B.R., Prabhu, D.K.: Assessment of Laminar, Convective Aeroheating Prediction Uncertainties for Mars Entry Vehicles, AIAA 2011-3144. 42nd AIAA Thermophysics Conference. Honolulu, Hawaii, 27–30 June 2011

    Google Scholar 

  40. Hornung, H.G.: Performance Data of the New Free-Piston Shock Tunnel at GALCIT, AIAA 92-3943, AIAA 17th Aerospace Ground Testing Conference, Julv 6-8, Nashville, TN (1992)

    Google Scholar 

  41. Hornung, H.G.: Experimental hypervelocity flow simulation, needs, achievements and limitations. First Pacific International Conference on Aerospace Science and Technology, PICAST’1, Tainan, Taiwan (1993)

    Google Scholar 

  42. Hornung, H.G.: Hypersonic real-gas effects on transition. In: IUTAM Symposium on One Hundred Years of Boundary Layer Research, Solid mechanics and its applications, Vol. 129, pp. 335–344 (2006)

    Google Scholar 

  43. Itoh, K., Ueda, S., Komuro, T., Saito, K., Takahashi, M., Miyajima, H., Koga, K.: Design and Construction of HIEST (High Enthalpy Shock Tunnel). In: Proceedings of the International Conference on Fluid Engineering, Vol. 1. JSME Press, Tokyo, pp. 353–358 (1997)

    Google Scholar 

  44. Itoh, K., Ueda, S., Tanno, H., Komuro, T., Sato, K., Takahashi, M., Miyajima, H., Muramoto, H.: Improvement of free piston driver for high enthalpy shock tunnel. Shock Waves 8(4), 215–233 (1998)

    Article  Google Scholar 

  45. Itoh, K., Ueda, S., Tanno, H., Komuro, T., Sato, K.: Hypersonic aerothermodynamic and scramjet research using high enthalpy shock tunnel. Shock Waves 12, 93–98 (2002)

    Article  Google Scholar 

  46. Jacobs, P.A., Gollan, R.J., Potter, D.F.: The Eilmer3 Code: User Guide and Example Book 2014 Edition, Mechanical Engineering Report 2014/05. School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Australia (2014)

    Google Scholar 

  47. Jacobs, P.A., Gollan, R.J., Potter, D.F., Zander, F., Gildfind, D.E., Blyton, P., Chan, W.Y.K., Doherty, L.J.: Estimation of High-Enthalpy Flow Conditions for Simple Shock and Expansion Processes Using the ESTCj Program and Library, Division of Mechanical Engineering Report 2011/02, Brisbane. School of Mechanical and Mining Engineering, The University of Queensland, Australia (2011)

    Google Scholar 

  48. Jacobs, P.A., Morgan, R.G., Stalker, R.J., Mee, D.J.: Use of argon-helium driver-gas mixtures in the T4 shock tube. In: Brun, R., Dimitrescu, L.Z. (eds.) Shock Waves at Marseille. Springer, Berlin (1995)

    Google Scholar 

  49. Jacobs, P.A., Stalker, R.J.: Mach-4 and Mach-8 axisymmetrical nozzles for a high-enthalpy shock tunnel. Aeronaut. J. 95(949), 324–334 (1991)

    Google Scholar 

  50. Johnson, H.B., Seipp, T., Candler, G.V.: Numerical study of hypersonic reacting boundary layer transition on cones. Phys. Fluids 10, 2676–2685 (1998)

    Article  Google Scholar 

  51. Johnston, I.A., Weiland, M., Martinez Schramm, J., Hannemann, K., Longo, J.: Aerothermodynamics of the ARD: Postflight Numerics and Shock-Tunnel Experiments, AIAA 2002–0407, 40th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 14–17 Jan 2002

    Google Scholar 

  52. Karl, S.: Numerical Investigation of a Generic Scramjet Configuration. PhD Thesis, TU Dresden, Dresden, Germany (2011)

    Google Scholar 

  53. Karl, S., Martinez Schramm, J., Hannemann, K.: High enthalpy shock tunnel flow past a cylinder: a basis for CFD validation. New Results in Numerical and Experimental Fluid Mechanics IV, Vol. 87. Springer, Berlin (2004)

    Google Scholar 

  54. Kimmel, R.L., Adamczak, D., Gaitonde. D., Rougeux, A., Hayes, J.R.: HIFiRE-1 Boundary layer transition experiment design, AIAA 2007-534, 45th AIAA Aerospace Sciences Meeting and Exhibit, 2007, Reno, Nevada, 8–11 Jan 2007

    Google Scholar 

  55. Kirchhartz, R.M., Mee, D.J., Stalker, R.J.: Supersonic skin-friction drag with tangential wall slot fuel injection and combustion. AIAA J. 50(2), 313–324 (2012). doi:10.2514/1.J05107

    Article  Google Scholar 

  56. Kirchhartz, R.: Upstream wall layer effects on drag reduction with boundary layer combustion. PhD Thesis, The University of Queensland, Brisbane, Australia (2009)

    Google Scholar 

  57. Laurence, S., Wagner, A., Hannemann, K., Wartemann, V., Lüdeke, H., Tanno, H., Ito, K.: Time-resolved visualization of instability waves in a hypersonic boundary layer. AIAA J. 50(1), 243–246 (2012)

    Article  Google Scholar 

  58. Laurence, S.J., Wagner, Hannemann, K.: Schlieren-based techniques for investigating instability development and transition in a hypersonic boundary layer. In: Experiments in Fluids, Vol. 55, p. 1782. Springer, Berlin (2014). doi:10.1007/s00348-014-1782-9

  59. Laurence, S., Karl, S., Martinez Schramm, J., Hannemann, K.: Transient fluid-combustion phenomena in a model scramjet. J. Fluid Mech. 722, 85–120 (2013)

    Google Scholar 

  60. Lu, F.K., Marren, D.E. (eds.): Advanced Hypersonic Test Facilities. Progress in Astronautics and Aeronautics, Vol. 198. AIAA, USA (2002)

    Google Scholar 

  61. Lukasiewicz, J.: Experimental methods of hypersonics. Marcel Dekker Inc, New York (1973)

    Google Scholar 

  62. Mack, L.: Linear stability theory and the problem of supersonic boundary-layer transition. AIAA J 13(3), 278–289 (1975)

    Article  Google Scholar 

  63. Malik, M.R.: Prediction and control of transition in supersonic and hypersonic boundary layers. AIAA J. 27(11), 1487–1493 (1989)

    Article  Google Scholar 

  64. Malmuth, N., Fedorov, A., Shalaev, V., Cole, J., Khokhlov, A., Hites, M., Williams, D.: Problems in high speed flow prediction relevant to control. In: 2nd AIAA, Theoretical Fluid Mechanics Meeting, AIAA 98-2695 (1998). doi: 10.2514/6.1998-2695

  65. Martinez Schramm, J.: Aerothermodynamische Untersuchung einer Wiedereintrittskonfiguration und ihrer Komponenten in einem impulsbetriebenen Hochenthalpie-Stoßkanal, Dissertation Universität Göttingen (2008)

    Google Scholar 

  66. Martinez Schramm, J., Sunami, T., Ito, K., Hannemann, K.: Experimental Investigation of Supersonic Combustion in the HIEST and HEG Free Piston Driven Shock Tunnels, AIAA 2010-7122, 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Nashville, TN, 25–28 July 2010

    Google Scholar 

  67. Martinez Schramm, J., Barth, T., Wagner, A., Hannemann, K.: Post Flight Analysis of SHEFEX I: shock tunnel testing and related CFD analysis. In: Proceedings of the 7th European Symposium on Aerothermodynamics for Space Vehicles. Brugge, Belgium, , 9–12 May 2011

    Google Scholar 

  68. Mee, D.J.: Dynamic calibration of force balances for impulse hypersonic facilities. Shock Waves 12(6), 443–455 (2003). doi: 10.1007/s00193-003-0181-6

    Google Scholar 

  69. Mee, D.J.: Boundary-layer transition measurements in hypervelocity flows in a shock tunnel. AIAA J. 40(8), 1542–1548 (2002)

    Article  Google Scholar 

  70. Mee, D.J., Daniel, W.J.T., Simmons, J.M.: Three-component force balance for flows of millisecond duration. AIAA J. 34(3), 590–595 (1996). doi:10.2514/3.13108

    Article  Google Scholar 

  71. Mee, D.J.: Uncertainty analysis of conditions in the test section of the T4 shock tunnel, Research Report 4/93. Department of Mechanical Engineering, The University of Queensland (1993)

    Google Scholar 

  72. Merzkirch, W.: Flow Visualization. Academic Press, Waltham (1974)

    Google Scholar 

  73. Park, C.: On convergence of computation of chemically reacting flows. In: AIAA-85-0247, AIAA 23rd Aerospace Sciences Meeting, Reno, NV (1985)

    Google Scholar 

  74. Parziale, N.J., Shepherd, J.E., Hornung, H.G.: Differential interferometric measurement of instability in a hypervelocity boundary layer. AIAA J. 51(3) (2013)

    Google Scholar 

  75. Owen, R. Cain, T.: Reconstruction of the Hyshot-2 Flight from onboard sensors. In: Proceedings of the Fifth European Symposium on Aerothermodynamics for Space Vehicles, Cologne, Germany, 8–11 Nov 2004

    Google Scholar 

  76. Paull, A., Alesi, H., Anderson, S.: The HyShot flight program and how it was developed. AIAA 2002-5248, AIAA/AAAF 11th International Space Planes and Hypersonic Systems and Technologies Conference. Orleans, France (2002)

    Google Scholar 

  77. Paull, A., Stalker, R.J., Mee, D.J.: Experiments on supersonic combustion ramjet propulsion in a shock tunnel. J. Fluid Mech. 296, 159–183 (1995)

    Article  Google Scholar 

  78. Rasheed, A., Hornung, H.G., Fedorov, A.V., Malmuth, N.D.: Experiments on passive hypervelocity boundary-layer control using an ultrasonically absorptive surface. AIAA 40(3), 481–489 (2002)

    Article  Google Scholar 

  79. Reimann B., Johnston I., Hannemann V.: The DLR TAU—code for high enthalpy flows, notes on num. Fluid Mech. Multidisc. Design 87, (2004)

    Google Scholar 

  80. Robinson, M.J., Mee, D.J., Paull, A.: Scramjet lift, thrust and pitching-moment characteristics measured in a shock tunnel. J. Propul. Power 22(1), 85–95 (2006). doi:10.2514/1.15978

    Article  Google Scholar 

  81. Robinson, M.: Simultaneous lift, moment and thrust measurements on a scramjet in hypervelocity flow. PhD Thesis, The University of Queensland, Australia (2003)

    Google Scholar 

  82. Rowan, S.A., Paull, A.: Performance of a scramjet combustor with combined normal and tangential fuel injection. J. Propul. Power 22(6), 1334–1338 (2006). doi:10.2514/1.18744

    Article  Google Scholar 

  83. Sanderson, S.R., Hornung, H.G., Sturtevant, B.: The influence of non-equilibrium dissociation on the flow produced by shock impingement on a blunt body. J. Fluid Mech. 516, 1–37 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  84. Sanderson, J.R., Simmons, J.M.: Drag balance for hypervelocity impulse facilities. AIAA J. 29(12), 2185–2191 (1991). doi:10.2514/3.10858

    Article  Google Scholar 

  85. Schneider, S.P.: Hypersonic laminar-turbulent transition on circular cones and scramjet forebodies. Prog. Aerosp. Sci. 40, 1–50 (2004)

    Article  Google Scholar 

  86. Schultz, D.L., Jones, T.V.: Heat-Transfer Measurements in Short-Duration Hypersonic Facilities. AGARDograph Report No. 165 (1973)

    Google Scholar 

  87. Skinner, K.A., Stalker, R.J.: Species measurements in a hypersonic, hydrogen-air, combustion wake. Combust. Flame 106(4), 478–486 (1996). doi:10.1016/0010-2180(96)00018-1

    Article  Google Scholar 

  88. Smart, M.K., Hass, N.E., Paull, A.: Flight data analysis of the HyShot 2 scramjet flight experiment. AIAA J. 44(10), 2366–2375 (2006)

    Article  Google Scholar 

  89. Smart, M.K.: Design of three-dimensional hypersonic inlets with rectangular-to-elliptical shape transition. J. Propul. Power 15(3), 408–416 (1999). doi:10.2514/2.5459

    Article  MathSciNet  Google Scholar 

  90. Smith, A.L.: Multiple component force measurement in short duration test flows. PhD Thesis, The University of Queensland, Brisbane, Australia (1999)

    Google Scholar 

  91. Smith, C.E.: The starting Process in a Hypersonic Nozzle. J. Fluid Mech. 24(part 4), 625–640 (1966)

    Google Scholar 

  92. Stalker, R.J.: Modern development in hypersonic wind tunnels. Aeronaut. J. 21–39 (2006)

    Google Scholar 

  93. Stalker, R.J.: Control of hypersonic turbulent skin friction by boundary-layer combustion of hydrogen. J. Spacecr. Rockets 42(4), 577–587 (2005). doi:10.2514/1.8699

    Article  Google Scholar 

  94. Stalker, R.J., Paull, A.: Experiments on cruise propulsion with a hydrogen scramjet. Aeronaut. J. 102(1011), 37–43 (1998)

    Google Scholar 

  95. Stalker, R.J., Morgan, R.G.: The University of Queensland free piston shock tunnel T4—Initial operation and preliminary calibration. In: Proceedings of the 4th National Space Engineering Symposium, Adelaide, pp. 182-198. Barton, ACT: Institution of Engineers, Australia, 12–14 July 1988 (1988)

    Google Scholar 

  96. Stalker R.J.: Shock tunnel for real-gas hypersonics. AGARD CP 428 (1987)

    Google Scholar 

  97. Stalker, R.J.: A study of the free-piston shock tunnel. AIAA J. 5(12), 2160–2165 (1967)

    Google Scholar 

  98. Sudani, N., Hornung, H.G.: Gasdynamical detectors of driver gas contamination in a high-enthalpy shock tunnel. AIAA J. 36(3), 313–319 (1998)

    Google Scholar 

  99. Suraweera, M.V.: Reduction of skin friction drag in hypersonic flow by boundary layer combustion. PhD thesis, The University of Queensland. Brisbane. Australia (2006)

    Google Scholar 

  100. Suraweera, M., Mee, D.J., Stalker, R.J.: Skin friction reduction in hypersonic turbulent flow by boundary layer combustion. AIAA Paper 2005-613. Presented at the 43rd Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 10–13 Jan 2005

    Google Scholar 

  101. Tanimizu, K., Mee, D.J., Stalker, R.J., Jacobs, P.A.: Drag force on quasi-axisymmetric scramjets at various flight Mach numbers: theory and experiment. Shock Waves 19(2), 83–93 (2009). doi:10.1007/s00193-009-0194-x

    Article  Google Scholar 

  102. Tanimizu, K.: Nozzle optimization study and measurements for a quasi-axisymmetric scramjet model. PhD Thesis, The University of Queensland, Brisbane. Australia. August (2008)

    Google Scholar 

  103. Tanno, H., Sato, K.,Komuro, T., Itoh. K.: Free-flight Aerodynamic Tests of Reentry Vehicles in High-temperature Real-gas Flow. AIAA 2014-3109, 19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Atlanta, Georgia, 16–20 June 2014

    Google Scholar 

  104. Tanno, H., Komuro, T., Ohnishi, N., Ishihara, T., Ogino, Y., Sawada, K.: Experimental study on heat flux augmentation in high-enthalpy shock tunnels. AIAA 2014-2548, 11th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, Atlanta, Georgia, 16–20 June 2014

    Google Scholar 

  105. Tanno, H., Sato, K., Komuro, T., Itoh, K., Takahashi, M., Fujita, K., Laurence, S., Hannemann, K.: Free-flight force measurement technique in shock tunnel. AIAA 2012-1241, 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, 9–12 Jan 2012

    Google Scholar 

  106. Tanno, H., Komuro, T., Sato, K., Itoh, K., Takahashi, M., Fulii, K.: Measurement of hypersonic high-enthalpy boundary layer transition on a 7º cone model. AIAA 2010-310, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, 4–7 Jan 2010

    Google Scholar 

  107. Tanno, H., Komuro, T., Sato, K., Itoh, K., Takahashi, M.: Miniature data-logger for aerodynamic force measurement in impulsive facility, AIAA 2010-4204, 27th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Chicago, Illinois, 28 June–1 July (2010)

    Google Scholar 

  108. Tanno, H., Komuro, T., Sato, K., Itoh, K., Yamada, T., Sato, N., Nakano, E.: Heat flux measurement of Apollo capsule model in the free-piston shock tunnel HIEST, AIAA 2009-7304. 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, Bremen, Germany, 19–22 Oct 2009

    Google Scholar 

  109. Tanno, H., Komuro, T., Sato, K., Itoh, K., Takahashi, M., Fujii, K.: Measurement of hypersonic boundary layer transition on cone models in the free-piston shock tunnel HIEST. AIAA 2009-781, 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, Orlando, Florida, 5–8 Jan 2009

    Google Scholar 

  110. Tanno, H., Paull, A., Stalker, R.J.: Skin-friction measurements in a supersonic combustor with crossflow fuel injection. J. Propul. Power 17(6), 1333–1338 (2001). doi:10.2514/2.5883

    Article  Google Scholar 

  111. Turner, J., Hörschgen, M., Jung, W., Stamminger, A., Turner, P.: SHEFEX Hypersonic re-entry flight experiment; vehicle and subsystem design, flight performance and prospects. AIAA 2006-8115, 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference (2006)

    Google Scholar 

  112. Tuttle, S.L., Mee, D.J., Simmons, J.M.: Drag measurements at Mach 5 using a stress wave force balance. Exp. Fluids 19(5), 336–341 (1995). doi:10.1007/BF00203418

    Article  Google Scholar 

  113. van Driest, E.R.: Turbulent boundary layer in compressible fluids. J. Spacecr. Rockets 40(6), 1012–1028 (2003). doi:10.2514/1.10862

    Article  Google Scholar 

  114. van Driest, E.R.: The Problem of Aerodynamic Heating. Aeronaut. Eng. Rev. 15(10), 26–41 (1956)

    Google Scholar 

  115. Wagner, A., Kuhn, M., Hannemann, K.: Ultrasonic absorption characteristics of porous carbon-carbon ceramics with random microstructure for passive hypersonic boundary layer transition control. Exp. Fluids 55(6), 1–9 (2014). doi 10.1007/s00348-014-1750-4

  116. Wagner A., Kuhn M., Martinez Schramm J., Hannemann K.: Experiments on passive hypersonic boundary layer control using ultrasonically absorptive carbon-carbon material with random microstructure. Exp. Fluids 54(10), 1–10 (2013). doi:10.1007/s00348-013-1606-3

  117. Weihs, H., Longo, J., Turner, J.: Key experiments within the SHEFEX II mission. In: IAC 2008, Glasgow, Scotland UK, IAC-08.D2.6.4 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Hannemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hannemann, K., Itoh, K., Mee, D.J., Hornung, H.G. (2016). Free Piston Shock Tunnels HEG, HIEST, T4 and T5. In: Igra, O., Seiler, F. (eds) Experimental Methods of Shock Wave Research. Shock Wave Science and Technology Reference Library, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-23745-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23745-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23744-2

  • Online ISBN: 978-3-319-23745-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics