Skip to main content

Using Richtmyer–Meshkov Instabilities to Estimate Metal Strength at Very High Rates

  • Conference paper

Abstract

Recently, Richtmyer–Meshkov instabilities (RMI) have been proposed for studying strength at strain rates up to 107/s. RMI experiments involve shocking a metal interface that has geometrical perturbations that invert and grow subsequent to the shock. As these perturbations grow, their growth may arrest, or they may grow unstably and eventually fail. The experiments observe the growth and arrest to study the specimen’s yield (deviatoric) strength. Along these lines we first review some RMI experimental results on Cu. Next, the paper presents explicit Lagrangian simulations used to help interpret the Cu RMI results and infer the strength, i.e. flow stress, of the target metal. A Preston-Tonks-Wallace (PTW) constitutive model is modified to be more accurate at the strain rates accessed in the experiment. The advantages and disadvantages of RMI, as compared to the Rayleigh–Taylor (shockless) instabilities that are used more commonly to infer strength, are discussed. The advantages of using simple velocimetry measurements in place of radiography are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Barnes, J.F., Blewett, P.J., McQueen, R.G., Meyer, K.A., Venable, D.: Taylor instability in solids. J. Appl. Phys. 45(2), 727–732 (1974). http://dx.doi.org/10.1063/1.1663310

    Article  Google Scholar 

  2. Colvin, J.D., Legrand, M., Remington, B.A., Schurtz, G., Weber, S.V.: A model for instability growth in accelerated solid metals. J. Appl. Phys. 93(9), 5287–5301 (2003). http://dx.doi.org/10.1063/1.1565188

    Article  Google Scholar 

  3. Lebedev, A.I., Nizovtsev, P.N., Rayevsky, V.A., Solovyov, V.P.: Rayleigh–Taylor instability in strong media, experimental study. In: Young, R., Glimm, J., Boston, B. (eds.) Proceedings of the Fifth International Workshop on Compressible Turbulent Mixing (1996)

    Google Scholar 

  4. Barton, N.R., Bernier, J.V., Becker, R., Arsenlis, A., Cavallo, R., Marian, J., Rhee, M., Park, H.-S., Remington, B.A., Olson, R.T.: A multiscale strength model for extreme loading conditions. J. Appl. Phys. 109(7), 073501 (2011). http://dx.doi.org/10.1063/1.3553718

    Article  Google Scholar 

  5. Smith, R.F., Eggert, J.H., Rudd, R.E., Swift, D.C., Bolme, C.A., Collins, G.W.: High strain-rate plastic flow in Al and Fe. J. Appl. Phys. 110(12), 123515 (2011). http://dx.doi.org/10.1063/1.3670001

    Article  Google Scholar 

  6. Piriz, A.R., Cela, J.J.L., Tahir, N.A., Hoffmann, D.H.H.: Richtmyer-Meshkov instability in elastic-plastic media. Phys. Rev. E 78(5), 056401 (2008)

    Article  Google Scholar 

  7. Piriz, A.R., Cela, J.J.L., Tahir, N.A.: Richtmyer–Meshkov instability as a tool for evaluating material strength under extreme conditions. Nucl. Instrum. Methods Phys. Res., Sect. A 606(1), 139–141 (2009)

    Article  Google Scholar 

  8. Dimonte, G., Terrones, G., Cherne, F.J., Germann, T.C., Dupont, V., Kadau, K., Buttler, W.T., Oro, D.M., Morris, C., Preston, D.L.: Use of the Richtmyer-Meshkov instability to infer yield stress at high-energy densities. Phys. Rev. Lett. 107(26), 264502 (2011)

    Article  Google Scholar 

  9. Buttler, W.T., Oró, D.M., Preston, D.L., Mikaelian, K.O., Cherne, F.J., Hixson, R.S., Mariam, F.G., Morris, C., Stone, J.B., Terrones, G., Tupa, D.: Unstable Richtmyer-Meshkov growth of solid and liquid metals in vacuum. J. Fluid Mech. 703, 60–84 (2012)

    Article  Google Scholar 

  10. López Ortega, A., Lombardini, M., Pullin, D.I., Meiron, D.I.: Numerical simulations of the Richtmyer-Meshkov instability in solid-vacuum interfaces using calibrated plasticity laws. Phys. Rev. E 89(3), 033018 (2014)

    Article  Google Scholar 

  11. Mikaelian, K.O.: Shock-induced interface instability in viscous fluids and metals. Phys. Rev. E 87(3), 031003 (2013)

    Article  Google Scholar 

  12. Plohr, J.N., Plohr, B.J.: Linearized analysis of Richtmyer-Meshkov flow for elastic materials. J. Fluid Mech. 537, 55–89 (2005)

    Article  Google Scholar 

  13. Prime, M.B., Vaughan, D.E., Preston, D.L., Buttler, W.T., Chen, S.R., Oró, D.M., Pack, C.: Using growth and arrest of Richtmyer-Meshkov instabilities and Lagrangian simulations to study high-rate material strength. J. Phys. Conf. Ser. 500(11), 112051 (2014)

    Article  Google Scholar 

  14. Buttler, W.T., Oro, D.M., Preston, D., Mikaelian, K.O., Cherne, F.J., Hixson, R.S., Mariam, F.G., Morris, C.L., Stone, J.B., Terrones, G., Tupa, D.: The study of high-speed surface dynamics using a pulsed proton beam. AIP Conf. Proc. 1426(1), 999–1002 (2012). http://dx.doi.org/10.1063/1.3686446

    Article  Google Scholar 

  15. Asay, J.R., Mix, L.P., Perry, F.C.: Ejection of material from shocked surfaces. Appl. Phys. Lett. 29(5), 284–287 (1976). http://dx.doi.org/10.1063/1.89066

    Article  Google Scholar 

  16. Germann, T.C., Hammerberg, J.E., Holian, B.L.: Large‐scale molecular dynamics simulations of ejecta formation in copper. AIP Conf. Proc. 706(1), 285–288 (2004). http://dx.doi.org/10.1063/1.1780236

    Article  Google Scholar 

  17. Zellner, M.B., Buttler, W.T.: Exploring Richtmyer–Meshkov instability phenomena and ejecta cloud physics. Appl. Phys. Lett. 93(11), 114102 (2008). http://dx.doi.org/10.1063/1.2982421

    Article  Google Scholar 

  18. Zellner, M.B., Dimonte, G., Germann, T.C., Hammerberg, J.E., Rigg, P.A., Stevens, G.D., Turley, W.D., Buttler, W.T.: Influence of shockwave profile on ejecta. AIP Conf. Proc. 1195(1), 1047–1050 (2009). http://dx.doi.org/10.1063/1.3294980

    Article  Google Scholar 

  19. Dimonte, G., Terrones, G., Cherne, F.J., Ramaprabhu, P.: Ejecta source model based on the nonlinear Richtmyer-Meshkov instability. J. Appl. Phys. 113(2), 024905 (2013). http://dx.doi.org/10.1063/1.4773575

    Article  Google Scholar 

  20. King, N.S.P., Ables, E., Adams, K., Alrick, K.R., Amann, J.F., Balzar, S., Barnes Jr., P.D., Crow, M.L., Cushing, S.B., Eddleman, J.C.: An 800-MeV proton radiography facility for dynamic experiments. Nucl. Instrum. Methods Phys. Res., Sect. A 424(1), 84–91 (1999)

    Article  Google Scholar 

  21. Holtkamp, D.B.: Survey of optical velocimetry experiments-applications of PDV, a heterodyne velocimeter. In: Kiuttu, G.F., Turchi, P.J., Reinovsky, R.E. (eds.) Proceedings of 2006 International Conference on Megagauss Magnetic Field Generation and Related Topics, pp. 119–128. IEEE, Santa Fe (2006). doi:10.1109/MEGAGUSS.2006.4530668

  22. Caramana, E.J., Burton, D.E., Shashkov, M.J., Whalen, P.P.: The construction of compatible hydrodynamics algorithms utilizing conservation of total energy. J. Comput. Phys. 146(1), 227–262 (1998). http://dx.doi.org/10.1006/jcph.1998.6029

    Article  Google Scholar 

  23. Burton, D.E., Carney, T.C., Morgan, N.R., Runnels, S.R., Sambasivan, S.K., Shashkov, M.J.: A cell-centered Lagrangian hydrodynamics method for multi-dimensional unstructured grids in curvilinear coordinates with solid constitutive models. Los Alamos National Laboratory Report LA-UR-11-04995 (2011)

    Google Scholar 

  24. Dobratz, B.M., Crawford, P.C.: LLNL explosives handbook. Properties of chemical explosives and explosive simulants. Lawrence Livermore National Laboratory Report UCRL-52997 Change 2 (1985)

    Google Scholar 

  25. Lyon, S.P., Johnson, J.D.: Sesame: the Los Alamos National Laboratory equation of state database. Los Alamos National Laboratory Report LA-UR-92-3407 (1992)

    Google Scholar 

  26. Preston, D.L., Tonks, D.L., Wallace, D.C.: Model of plastic deformation for extreme loading conditions. J. Appl. Phys. 93(1), 211–220 (2003)

    Article  Google Scholar 

  27. Tonks, D., Zurek, A., Thissell, W., Vorthman, J., Hixson, R.: The Tonks ductile damage model. Los Alamos National Laboratory Report LA-UR-03-0809 (2002)

    Google Scholar 

  28. Zurek, A.K., Thissell, W.R., Johnson, J.N., Tonks, D.L., Hixson, R.: Micromechanics of spall and damage in tantalum. J. Mater. Process. Technol. 60(1–4), 261–267 (1996). http://dx.doi.org/10.1016/0924-0136(96)02340-0

    Article  Google Scholar 

  29. Tonks, D.L.: Percolation wave propagation, and void link-up effects in ductile fracture. J. Phys. IV 4(C8), C8-665–C8-670 (1994)

    Google Scholar 

  30. Tonks, D.L., Zurek, A.K., Thissell, W.R.: Void coalescence model for ductile damage. AIP Conf. Proc. 620(1), 611–614 (2002). http://dx.doi.org/10.1063/1.1483613

    Article  Google Scholar 

  31. Tonks, D.L., Bronkhorst, C.A., Bingert, J.F.: Inertial effects in dynamical ductile damage in copper. Los Alamos National Laboratory Report LA-UR-11-05803 (2011)

    Google Scholar 

  32. Park, H.-S., Lorenz, K.T., Cavallo, R.M., Pollaine, S.M., Prisbrey, S.T., Rudd, R.E., Becker, R.C., Bernier, J.V., Remington, B.A.: Viscous Rayleigh-Taylor instability experiments at high pressure and strain rate. Phys. Rev. Lett. 104(13), 135504 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of the pRad team in acquiring these data. In addition, we appreciate contributions to these experiments by members of the LANL MST-7 group where our Cu targets were machined and characterized by F. Garcia, B. Day and D. Schmidt.

This work was performed at Los Alamos National Laboratory, operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Prime .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Prime, M.B. et al. (2016). Using Richtmyer–Meshkov Instabilities to Estimate Metal Strength at Very High Rates. In: Song, B., Lamberson, L., Casem, D., Kimberley, J. (eds) Dynamic Behavior of Materials, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-22452-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22452-7_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22451-0

  • Online ISBN: 978-3-319-22452-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics