Skip to main content

Cooperative Diversity Under Spatial Interference Correlation in Wireless Networks

  • Chapter
  • First Online:

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

Cooperative diversity is a promising technique to increase link reliability and coverage, however, its performance is affected by interference created by concurrently transmitting nodes over the same time-frequency resources. More specifically, interference is spatially correlated across cooperating nodes and this type of correlation may expunge the diversity gains known for the interference-free case. This chapter analyzes this effect using tools from stochastic geometry. First, the diversity order bottleneck for a simple three-node relaying system using selection decode-and-forward is identified and specific conditions under which the diversity order corresponding to the interference-free case can be recovered are found. Second, the concept of cooperative interference cancellation is proposed, which exploits the fact that interference is correlated across cooperative nodes. Possible deployment scenarios, the importance of the correlation of the interference signal, as well as remaining technical challenges are discussed. Finally, a first simulation-based analysis demonstrates that cooperative interference cancellation can increase throughput by around 25 % in a typical 4G network.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The analysis can be carried out for \(\Vert x_{\mathrm {S}} \Vert =\Vert x_{\mathrm {R}} \Vert \) in a similar way, see for instance [1], however, with no additional insights.

  2. 2.

    Obviously, modifying the fading assumption does not change the SDO in the MAC phase due to the inability or the relay to reduce interference at the destination node as explained before.

  3. 3.

    Some parts of Sect. 16.3 are reprinted, with permission, from R. Tanbourgi, H. Jäkel, F.K. Jondral, “Cooperative interference cancellation using device-to-device communications,” IEEE Commun. Magazine, vol. 52, no. 6, pp. 118–124, June 2014, © 2015 IEEE.

References

  1. Altieri A, Vega LR, Piantanida P, Galarza CG (2014) Analysis of a cooperative strategy for a large decentralized wireless network. IEEE/ACM Trans Netw 22(4):1039–1051. doi:10.1109/TNET.2013.2269054

    Article  Google Scholar 

  2. Andrews JG (2013) Seven ways that HetNets are a cellular paradigm shift. IEEE Commun Mag 51(3):136–144. doi:10.1109/MCOM.2013.6476878

    Article  Google Scholar 

  3. Andrews JG, Weber S, Haenggi M (2007) Ad hoc networks: to spread or not to spread? IEEE Commun Mag 45(12):84–91. doi:10.1109/MCOM.2007.4395371

    Article  Google Scholar 

  4. Andrews JG, Ganti RK, Haenggi M, Jindal N, Weber S (2010) A primer on spatial modeling and analysis in wireless networks. IEEE Commun Mag 48(11):156–163. doi:10.1109/MCOM.2010.5621983

    Article  Google Scholar 

  5. Cover T, Gamal AE (1979) Capacity theorems for the relay channel. IEEE Trans Inf Theory 25(5):572–584. doi:10.1109/TIT.1979.1056084

    Article  MATH  Google Scholar 

  6. Crismani A, Toumpis S, Schilcher U, Brandner G, Bettstetter C (2014) Cooperative relaying under spatially and temporally correlated interference. IEEE Trans Veh Technol PP(99):1–1. doi:10.1109/TVT.2014.2372633

    Google Scholar 

  7. Dabora R, Maric I, Goldsmith A (2008) Interference forwarding in multiuser networks. In: IEEE global telecommunications conference (GLOBECOM), pp 1–5. doi:10.1109/GLOCOM.2008.ECP.192

  8. Ganti RK, Haenggi M (2009) Spatial and temporal correlation of the interference in ALOHA ad hoc networks. IEEE Commun Lett 13(9):631–633. doi:10.1109/LCOMM.2009.090837

    Article  MathSciNet  Google Scholar 

  9. Haenggi M (2005) On distances in uniformly random networks. IEEE Trans Inf Theory 51(10):3584–3586. doi:10.1109/TIT.2005.855610

    Article  MathSciNet  MATH  Google Scholar 

  10. Haenggi M (2012) Diversity loss due to interference correlation. IEEE Commun Lett 16(10):1600–1603

    Article  Google Scholar 

  11. Haenggi M, Ganti RK (2008) Interference in large wireless networks. Found Trends Netw 3(2):127–248. doi:10.1561/1300000015

    Article  MATH  Google Scholar 

  12. Haenggi M, Smarandache R (2013) Diversity polynomials for the analysis of temporal correlations in wireless networks. IEEE Trans Wirel Commun 12(11):5940–5951

    Article  Google Scholar 

  13. Haenggi M, Andrews JG, Baccelli F, Dousse O, Franceschetti M (2009) Stochastic geometry and random graphs for the analysis and design of wireless networks. IEEE J Sel Areas Commun 27(7):1029–1046. doi:10.1109/JSAC.2009.090902

    Article  Google Scholar 

  14. Hoymann C, Chen W, Montojo J, Golitschek A, Koutsimanis C, Shen X (2012) Relaying operation in 3GPP LTE: challenges and solutions. IEEE Commun Mag 50(2):156–162. doi:10.1109/MCOM.2012.6146495

    Article  Google Scholar 

  15. Katz M, Shamai S (2006) Relaying protocols for two colocated users. IEEE Trans Inf Theory 52(6):2329–2344. doi:10.1109/TIT.2005.862090

    Article  MathSciNet  MATH  Google Scholar 

  16. Laneman JN, Tse D, Wornell GW (2004) Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Trans Inf Theory 50(12):3062–3080. doi:10.1109/TIT.2004.838089

    Article  MathSciNet  MATH  Google Scholar 

  17. Lee D, Seo H, Clerckx B, Hardouin E, Mazzarese D, Nagata S, Sayana K (2012) Coordinated multipoint transmission and reception in LTE-advanced: deployment scenarios and operational challenges. IEEE Commun Mag 50(2):148–155. doi:10.1109/MCOM.2012.6146494

    Article  Google Scholar 

  18. Sawahashi M, Kishiyama Y, Morimoto A, Nishikawa D, Tanno M (2010) Coordinated multipoint transmission/reception techniques for LTE-advanced [coordinated and distributed MIMO]. IEEE Wirel Commun 17(3):26–34. doi:10.1109/MWC.2010.5490976

    Article  Google Scholar 

  19. Schilcher U, Bettstetter C, Brandner G (2012) Temporal correlation of interference in wireless networks with Rayleigh block fading. IEEE Trans Mobile Comput 11(12):2109–2120. doi:10.1109/TMC.2011.244

    Article  Google Scholar 

  20. Stoyan D, Kendall W, Mecke J (1995) Stochastic geometry and its applications, 2nd edn. Wiley

    Google Scholar 

  21. Tanbourgi R, Jäkel H, Jondral FK (2013) Cooperative relaying in a Poisson field of interferers: a diversity order analysis. In: IEEE international symposium on information Theory, pp 3100–3104. doi:10.1109/ISIT.2013.6620796

  22. Tanbourgi R, Dhillon HS, Andrews JG, Jondral FK (2014) Dual-branch MRC receivers under spatial interference correlation and Nakagami fading. IEEE Trans Commun 62(6):1830–1844. doi:10.1109/TCOMM.2014.2321553

    Article  Google Scholar 

  23. Tanbourgi R, Dhillon HS, Andrews JG, Jondral FK (2014) Effect of spatial interference correlation on the performance of maximum ratio combining. IEEE Trans Wirel Commun 13(6):3307–3316. doi:10.1109/TWC.2014.041714.131330

    Article  Google Scholar 

  24. Weber S, Yang X, Andrews JG, de Veciana G (2005) Transmission capacity of wireless ad hoc networks with outage constraints. IEEE Trans Inf Theory 51(12):4091–4102. doi:10.1109/TIT.2005.858939

    Article  MATH  Google Scholar 

  25. Weber S, Andrews JG, Jindal N (2010) An overview of the transmission capacity of wireless networks. IEEE Trans Commun 58(12):3593–3604. doi:10.1109/TCOMM.2010.093010.090478

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Research Foundation (DFG) under Grants JO258/21-1 and JO258/21-2. The authors would like to thank their colleagues from KT Duisburg-Essen, namely Andrey Skrebtsov, Guido Bruck, and Peter Jung, for the cooperation within the projects StoCCNets and CREDIT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Jäkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tanbourgi, R., Jäkel, H., Jondral, F.K. (2016). Cooperative Diversity Under Spatial Interference Correlation in Wireless Networks. In: Utschick, W. (eds) Communications in Interference Limited Networks. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-22440-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22440-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22439-8

  • Online ISBN: 978-3-319-22440-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics