Skip to main content

Proton Transfer in Aqueous Solution: Exploring the Boundaries of Adaptive QM/MM

  • Chapter
  • First Online:
Quantum Modeling of Complex Molecular Systems

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 21))

Abstract

In this chapter, we review the current state-of-the-art in quantum mechanical/molecular mechanical (QM/MM) simulations of reactions in aqueous solutions, and we discuss how proton transfer poses new challenges for its successful application. In the QM/MM description of an aqueous reaction, solvent molecules in the QM region are diffusive and need to be either constrained within the region, or their description (QM versus MM) needs to be updated as they diffuse away. The latter approach is known as adaptive QM/MM. We review several constrained and adaptive QM/MM methods, and classify them in a consistent manner. Most of the adaptive methods employ a transition region, where every solvent molecule can continuously change character (from QM to MM, and vice versa), temporarily becoming partially QM and partially MM. Where a conventional QM/MM scheme partitions a system into a set of QM and a set of MM atoms, an adaptive method employs multiple QM/MM partitions, to describe the fractional QM character. We distinguish two classes of adaptive methods: Discontinuous and continuous. The former methods use at most two QM/MM partitions, and cannot completely avoid discontinuities in the energy and the forces. The more recent continuous adaptive methods employ a larger number of QM/MM partitions for a given configuration. Comparing the performance of the methods for the description of solution chemistry, we find that in certain cases the low-cost constrained methods are sufficiently accurate. For more demanding purposes, the continuous adaptive schemes provide a good balance between dynamical and structural accuracy. Finally, we challenge the adaptive approach by applying it to the difficult topic of proton transfer and diffusion. We present new results, using a well-behaved continuous adaptive method (DAS) to describe an alkaline aqueous solution of methanol. Comparison with fully QM and fully MM simulations shows that the main discrepancies are rooted in the presence of a QM/MM boundary, and not in the adaptive scheme. An anomalous confinement of the hydroxide ion to the QM part of the system stems from the mismatch between QM and MM potentials, which affects the free diffusion of the ion. We also observe an increased water density inside the QM region, which originates from the different chemical potentials of the QM and MM water molecules. The high density results in locally enhanced proton transfer rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shelton DP (2000) Chem Phys Lett 325:513. doi:10.1016/S0009-2614(00)00734-X

    Article  CAS  Google Scholar 

  2. Marcus Y (2009) Chem Rev 109(3):1346. doi:10.1021/cr8003828

    Article  CAS  Google Scholar 

  3. von Grotthuss CJT(1806) Ann Chim (Paris) 58:54. Available at: http://gallica.bnf.fr/ark:/12148/bpt6k6573748h/f54.image.r=Annales%20de%20chimie%20Paris.langEN

  4. Tielrooij KJ, Timmer RLA, Bakker HJ, Bonn M (2009) Phys Rev Lett 102:198303. doi:10.1103/PhysRevLett.102.198303

    Article  CAS  Google Scholar 

  5. Hassanali A, Giberti F, Cuny J, Kühne TD, Parrinello M (2013) PNAS 110(34):13723. doi:10.1073/pnas.1306642110

    Article  CAS  Google Scholar 

  6. Roberts ST, Mandal A, Tokmakoff A (2014) J Phys Chem B 118(28):8062. doi:10.1021/jp501145p

    Article  CAS  Google Scholar 

  7. Giberti F, Hassanali AA, Ceriotti M, Parrinello M (2014) J Phys Chem B 118(46):13226. doi:10.1021/jp507752e

    Article  CAS  Google Scholar 

  8. Tuckerman ME, Marx D, Parrinello M (2002) Nature 417(6892):925. doi:10.1038/nature00797

    Article  CAS  Google Scholar 

  9. Warshel A, Levitt M (1976) J Mol Biol 103(2):227. doi:10.1016/0022-2836(76)90311-9

    Article  CAS  Google Scholar 

  10. Thole BT, van Duijnen PT (1980) Theor Chim Acta 55(4):307. doi:10.1007/BF00549429

    Article  CAS  Google Scholar 

  11. Field MJ, Bash PA, Karplus M (1990) J Comput Chem 11(6):700. doi:10.1002/jcc.540110605

    Article  CAS  Google Scholar 

  12. Gao J (1995) Reviews in computational chemistry. In: Lipkowitz K, Boyd DB (eds) Wiley, pp 119–185. doi:10.1002/9780470125847.ch3

  13. Sherwood P (2000) Modern methods and algorithms of quantum chemistry: proceedings. In: Grotendorst J (ed) NIC series, vol 3, 2nd edn. NIC-Directors, Jülich, pp 257–277

    Google Scholar 

  14. Carloni P, Rothlisberger U, Parrinello M (2002) Acc Chem Res 35(6):455. doi:10.1021/ar010018u

    Article  CAS  Google Scholar 

  15. Magistrato A, DeGrado WF, Laio A, Rothlisberger U, VandeVondele J, Klein ML (2003) J Phys Chem B 107(17):4182. doi:10.1021/jp027032o

    Article  CAS  Google Scholar 

  16. Kerdcharoen T, Liedl KR, Rode BM (1996) Chem Phys 211(1–3):313. doi:10.1016/0301-0104(96)00152-8

    Article  CAS  Google Scholar 

  17. Bulo RE, Michel C, Fleurat-Lessard P, Sautet P (2013) J Chem Theory Comput 9(12):5567. doi:10.1021/ct4005596

    Article  CAS  Google Scholar 

  18. Pezeshki S, Lin H (2015) Mol Simul 41(1–3):168. doi:10.1080/08927022.2014.911870

    Article  CAS  Google Scholar 

  19. Park K, Gotz AW, Walker RC, Paesani F (2012) J Chem Theory Comput 8:2868. doi:10.1021/ct300331f

    Article  CAS  Google Scholar 

  20. Mones L, Jones A, Goetz AW, Laino T, Walker RC, Leimkuhler B, Cányi G, Bernstein N (2015) J Comput Chem 36: 633. doi:10.1002/jcc.23839

  21. Pezeshki S, Davis C, Heyden A, Lin H (2014) J Chem Theory Comput 10:4765. doi:10.1021/ct500553x

    Article  CAS  Google Scholar 

  22. Tunon I, Martins-Costa MTC, Millot C, Ruiz-Lopez MF (1997) J Chem Phys 106(9):3633. doi:10.1063/1.473457

    Article  CAS  Google Scholar 

  23. Várnai C, Bernstein N, Mones L, Csányi G (2013) J Phys Chem B 117(40):12202. doi:10.1021/jp405974b

    Article  Google Scholar 

  24. Nielsen SO, Bulo RE, Moore PB, Ensing B (2010) Phys Chem Chem Phys 12:12401. doi:10.1039/c004111d

    Article  CAS  Google Scholar 

  25. Potestio R, Fritsch S, Espanol P, Delgado-Buscalioni R, Kremer K, Everaers R, Donadio D (2013) Phys Rev Lett 110:108301/1. doi:10.1103/PhysRevLett.110.108301

  26. Praprotnik M, Delle Site L (2013) Methods Mol Biol (NY, U.S.) 924:567. doi:10.1007/978-1-62703-017-5_21

  27. Salazar MR (2005) J Phys Chem A 109(50):11515. doi:10.1021/jp053551q

    Article  CAS  Google Scholar 

  28. Guthrie MG, Daigle AD, Salazar MR (2010) J Chem Theory Comput 6:18. doi:10.1021/ct900449q

    Article  CAS  Google Scholar 

  29. Pezeshki S, Lin H (2011) J Chem Theory Comput 7:3625. doi:10.1021/ct2005209

    Article  CAS  Google Scholar 

  30. Kerdcharoen T, Morokuma K (2002) Chem Phys Lett 355(3–4):257. doi:10.1016/S0009-2614(02)00210-5

    Article  CAS  Google Scholar 

  31. Csányi G, Albaret T, Payne MC, De Vita A (2004) Phys Rev Lett 93:175503. doi:10.1103/PhysRevLett.93.175503

    Article  Google Scholar 

  32. Bernstein N, Várnai C, Solt I, Winfield SA, Payne MC, Simon I, Fuxreiter M, Csányi G (2012) Phys Chem Chem Phys 14:646. doi:10.1039/c1cp22600b

    Article  CAS  Google Scholar 

  33. Heyden A, Lin H, Truhlar DG (2007) J Phys Chem B 111(9):2231. doi:10.1021/jp0673617

    Article  CAS  Google Scholar 

  34. Bulo RE, Ensing B, Sikkema J, Visscher L (2009) J Chem Theory Comput 5(9):2212. doi:10.1021/ct900148e

    Article  CAS  Google Scholar 

  35. Watanabe HC, Kubar T, Elstner M (2014) J Chem Theory Comput. doi:10.1021/ct5005593

    Google Scholar 

  36. Bakowies D, Thiel W (1996) J Phys Chem 100(25):10580. doi:10.1021/jp9536514

    Article  CAS  Google Scholar 

  37. Senn H, Thiel W (2007) Atomistic approaches in modern biology. In: Reiher M (ed) Topics in current chemistry, vol 268. Springer, Berlin, pp 173–290. doi:10.1007/128_2006_084

  38. Senn HM, Thiel W (2009) Angew Chem Int Ed 48(7):1198. doi:10.1002/anie.200802019

    Article  CAS  Google Scholar 

  39. Zhang Y, Lin H (2008) J Chem Theory Comput 4(3):414. doi:10.1021/ct700296x

    Article  CAS  Google Scholar 

  40. Zhang Y, Lin H (2010) Theor Chem Acc 126(5–6):315. doi:10.1007/s00214-009-0704-z

    Article  CAS  Google Scholar 

  41. Rowley CN, Roux B (2012) J Chem Theory Comput 8(10):3526. doi:10.1021/ct300091w

    Article  CAS  Google Scholar 

  42. Shiga M, Masia M (2013) J Chem Phys 139(4):044120. doi:10.1063/1.4816629

    Article  Google Scholar 

  43. Hofer TS, Pribil AB, Randolf BR, Rode BM (2005) J Am Chem Soc 127(41):14231. doi:10.1021/ja052700f

    Article  CAS  Google Scholar 

  44. Fleurat-Lessard P, Michel C, Bulo RE (2012) J Chem Phys 137:074111/1. doi:10.1063/1.4739743

  45. Pezeshki S, Davis C, Heyden A, Lin H (2014) J Chem Theory Comput 10:4765. doi:10.1021/ct500553x

    Article  CAS  Google Scholar 

  46. Takenaka N, Kitamura Y, Koyano Y, Nagaoka M (2012) Chem Phys Lett 524:56. doi:10.1016/j.cplett.2011.12.053

    Article  CAS  Google Scholar 

  47. Takenaka N, Kitamura Y, Koyano Y, Nagaoka M (2012) J Chem Phys 137:024501/1. doi:10.1063/1.4732307

  48. Waller MP, Kumbhar S, Yang J (2014) ChemPhysChem 15:3218. doi:10.1002/cphc.201402105

    Article  CAS  Google Scholar 

  49. Velde G, Bickelhaupt F, Baerends E, Fonseca-Guerra C, Van Gisbergen S, Snijders J, Ziegler T (2001) J Comput Chem 22:931. doi:10.1002/jcc.1056

    Article  Google Scholar 

  50. Rode BM, Schwenk CF, Tongraar A (2004) J Mol Liq 110:105. doi:10.1016/j.molliq.2003.09.016

    Article  CAS  Google Scholar 

  51. Hofer TS, Tran HT, Schwenk CF, Rode BM (2004) J Comput Chem 25(2):211. doi:10.1002/jcc.10374

    Article  CAS  Google Scholar 

  52. Agmon N (1995) Chem Phys Lett 244:456. doi:10.1016/0009-2614(95)00905-J

    Article  CAS  Google Scholar 

  53. Komatsuzaki T, Ohmine I (1994) Chem Phys 180(23):239. doi:10.1016/0301-0104(93)E0424-T

    Article  CAS  Google Scholar 

  54. Newton MD, Ehrenson S (1971) J Am Chem Soc 93(20):4971. doi:10.1021/ja00749a001

    Article  CAS  Google Scholar 

  55. Markovitch O, Chen H, Izvekov S, Paesani F, Voth GA, Agmon N (2008) J Phys Chem B 112(31):9456. doi:10.1021/jp804018y

    Article  CAS  Google Scholar 

  56. Marx D, Chandra A, Tuckerman ME (2010) Chem Rev 110(4):2174. doi:10.1021/cr900233f

    Article  CAS  Google Scholar 

  57. Botti A, Bruni F, Imberti S, Ricci M, Soper A (2005) J Mol Liq 117(1–3):81. doi:10.1016/j.molliq.2004.08.013

    Article  CAS  Google Scholar 

  58. Rahaman O, van Duin ACT, Goddard WA, Doren DJ (2011) J Phys Chem B 115(2):249. doi:10.1021/jp108642r

    Article  CAS  Google Scholar 

  59. Stewart J (2007) J Mol Model 13(12):1173. doi:10.1007/s00894-007-0233-4

    Article  CAS  Google Scholar 

  60. Korth M (2010) J Chem Theory Comput 6(12):3808. doi:10.1021/ct100408b

    Article  CAS  Google Scholar 

  61. Stewart JJP (2012) Mopac2012. Stewart computational chemistry, Version 7.263 W. http://OpenMOPAC.net

  62. Marion A, Monard G, Ruiz-Lopez MF, Ingrosso F (2014) J Chem Phys 141(3):034106. doi:10.1063/1.4886655

    Article  Google Scholar 

  63. Bernal-Uruchurtu MI, Ruiz-López MF (2000) Chem Phys Lett 330(1–2):118. doi:10.1016/S0009-2614(00)01062-9

    Article  CAS  Google Scholar 

  64. Monard G, Bernal-Uruchurtu MI, van der Vaart A, Merz KM, Ruiz-López MF (2005) J Phys Chem A 109(15):3425. doi:10.1021/jp0459099

    Article  CAS  Google Scholar 

  65. Wu X, Thiel W, Pezeshki S, Lin H (2013) J Chem Theory Comput 9(6):2672. doi:10.1021/ct400224n

    Article  CAS  Google Scholar 

  66. Rappe AK, Goddard WA (1991) J Phys Chem 95(8):3358. doi:10.1021/j100161a070

    Article  CAS  Google Scholar 

  67. Fritsch S, Poblete S, Junghans C, Ciccotti G, Delle Site L, Kremer K (2012) Phys Rev Lett 108:170602/1. doi:10.1103/PhysRevLett.108.170602

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Fleurat-Lessard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jiang, T., Boereboom, J.M., Michel, C., Fleurat-Lessard, P., Bulo, R.E. (2015). Proton Transfer in Aqueous Solution: Exploring the Boundaries of Adaptive QM/MM. In: Rivail, JL., Ruiz-Lopez, M., Assfeld, X. (eds) Quantum Modeling of Complex Molecular Systems. Challenges and Advances in Computational Chemistry and Physics, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-21626-3_2

Download citation

Publish with us

Policies and ethics