Skip to main content

Freak-Waves: Compact Equation Versus Fully Nonlinear One

  • Chapter
  • First Online:
Extreme Ocean Waves

Abstract

We compare applicability of the recently derived compact equation for surface wave with the fully nonlinear equations. Strongly nonlinear phenomena, namely modulational instability and breathers with the steepness \(\mu \sim 0.4\) are compared in numerical simulations using both models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Dyachenko AI (2001) On the dynamics of an ideal fluid with a free surface. Dokl Math 63(1):115–118

    Google Scholar 

  • Dyachenko AI, Kachulin DI, Zakharov VE (2013) On the nonintegrability of the free surface hydrodynamics. JETP Lett 98(1):43–47

    Article  Google Scholar 

  • Dyachenko AI, Kachulin DI, Zakharov VE (2013) Collisions of two breathers at the surface of deep water. Nat Hazards Earth Syst Sci, Spec Issue: Extrem Seas Ship Oper 13:3205–3210

    Article  Google Scholar 

  • Dyachenko AI, Kachulin DI, Zakharov VE (2014) Freak waves at the surface of deep water. J Phys: Conf Ser 510:012050

    Google Scholar 

  • Dyachenko AI, Kuznetsov EA, Spector MD, Zakharov VE (1996a) Analytical description of the free surface dynamics of an ideal fluid. Phys Lett A 221:73–79

    Google Scholar 

  • Dyachenko AI, Kuznetsov EA, Zakharov VE (1996b) Nonlinear dynamics of the free surface of an ideal fluid. Plasma Phys Rep 22(10):829–840

    Google Scholar 

  • Dyachenko AI, Zakharov VE (1994) Is the free-surface hydrodynamics an integrable system? Phys Lett A 190:144–148

    Article  Google Scholar 

  • Dyachenko AI, Zakharov VE (2005) Modulation instability of stokes wave \(\rightarrow \) freak wave. JETP Lett 81(6):255–259

    Article  Google Scholar 

  • Dyachenko AI, Zakharov VE (2008) On the formation of freak waves on the surface of deep water. JETP Lett 88(5):307–311

    Article  Google Scholar 

  • Dyachenko AI, Zakharov VE (2011) Compact equation for gravity waves on deep water. JETP Lett 93(12):701–705

    Article  Google Scholar 

  • Dyachenko AI, Zakharov VE (2012) A dynamic equation for water waves in one horizontal dimension. Eur J Mech B 32:17–21

    Article  Google Scholar 

  • Slunyaev A, Clauss GF, Klein M, Onorato M (2013) Simulations and experiments of short intense envelope solitons of surface water waves. Phys Fluids 25:067105

    Article  Google Scholar 

  • Zakharov VE (1968) Stability of periodic waves of finite amplitude on the surface of a deep fluid. J Appl Mech Tech Phys 9(2):190–194

    Article  Google Scholar 

  • Zakharov VE, Dyachenko AI, Prokofiev AO (2006) Freak waves as nonlinear stage of Stokes wave modulation instability. Eur J Mech B/Fluids 120(5):677–692

    Article  Google Scholar 

  • Zakharov VE, Dyachenko AI, Prokofiev AO (2008) Freak waves: peculiarities of numerical simulations. In: Pelinovsky E, Kharif C (eds) Extreme ocean waves. Springer, Berlin, pp 1–30

    Chapter  Google Scholar 

  • Zakharov VE, Lvov VS, Falkovich G (1992) Kolmogorov spectra of turbulence I. Springer, Berlin

    Book  Google Scholar 

Download references

Acknowledgments

Main part of this work, regarding numerical simulation of modulational instability and narrow breather in the framework of compact equation and derivation of canonical transformation, was supported by Grant “Wave turbulence: theory, numerical simulation, experiment” #14-22-00174 of Russian Science Foundation.

Rest part of the work was supported by the Program “Fundamental Problems of Nonlinear Dynamics in Mathematics and Physics” from the RAS Presidium, and Grant 6170.2012.2 “Leading Scientific Schools of Russia”.

Numerical simulation was performed on the Informational Computational Center of the Novosibirsk State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Dyachenko .

Editor information

Editors and Affiliations

Appendix

Appendix

Coefficients in the Hamiltonian (9) can be calculated plugging expressions for complex canonical variables into the (2):

$$\begin{aligned} U_{k_1k_2k_3}= & {} \frac{1}{8}\frac{g^{\frac{1}{4}}}{\sqrt{\pi }} \left[ |\frac{k_1}{k_2k_3}|^{\frac{1}{4}}L_{k_2k_3} + |\frac{k_2}{k_1k_3}|^{\frac{1}{4}}L_{k_1k_3} + |\frac{k_3}{k_1k_2}|^{\frac{1}{4}}L_{k_1k_2} \right] ,\\V^{k_1}_{k_2k_3}= & {} \frac{1}{8}\frac{g^{\frac{1}{4}}}{\sqrt{\pi }} \left[ |\frac{k_1}{k_2k_3}|^{\frac{1}{4}}L_{k_2k_3} - |\frac{k_2}{k_1k_3}|^{\frac{1}{4}}L_{-k_1k_3} - |\frac{k_3}{k_1k_2}|^{\frac{1}{4}}L_{-k_1k_2} \right] . \end{aligned}$$
(18)
$$\begin{aligned} W_{k_1k_2}^{k_3k_4}= & {} \frac{-1}{32\pi } \bigg [ \left| \frac{k_1k_2}{k_3k_3} \right| ^\frac{1}{4}M_{-k_3-k_4}^{k_1k_2} + \left| \frac{k_3k_4}{k_1k_2} \right| ^\frac{1}{4}M_{k_1k_2}^{-k_3-k_4} - \left| \frac{k_1k_3}{k_2k_4} \right| ^\frac{1}{4}M_{k_2-k_4}^{k_1-k_3} - \left| \frac{k_2k_3}{k_1k_4} \right| ^\frac{1}{4}M_{k_1-k_4}^{k_2-k_3} -\\- & {} \left| \frac{k_1k_4}{k_2k_3} \right| ^\frac{1}{4}M_{k_2-k_3}^{k_1-k_4} - \left| \frac{k_2k_4}{k_1k_3} \right| ^\frac{1}{4}M_{k_1-k_3}^{k_2-k_4} \bigg ]\\G_{k_1k_2k_3}^{k_4}= & {} \frac{-1}{32\pi }\bigg [ \left| \frac{k_3k_4}{k_1k_2} \right| ^\frac{1}{4}M_{k_1k_2}^{k_3-k_4} + \left| \frac{k_2k_4}{k_1k_3} \right| ^\frac{1}{4}M_{k_1k_3}^{k_2-k_4} + \left| \frac{k_1k_4}{k_2k_3} \right| ^\frac{1}{4}M_{k_2k_3}^{k_1-k_4} - \left| \frac{k_1k_2}{k_3k_4} \right| ^\frac{1}{4}M_{k_3-k_4}^{k_1k_2} -\\- & {} \left| \frac{k_1k_3}{k_2k_4} \right| ^\frac{1}{4}M_{k_2-k_4}^{k_1k_3} - \left| \frac{k_2k_3}{k_1k_4} \right| ^\frac{1}{4}M_{k_1-k_4}^{k_2k_3} \bigg ]\\R_{k_1k_2k_3k_4}= & {} \frac{-1}{32\pi }\bigg [ \left| \frac{k_3k_4}{k_1k_2} \right| ^\frac{1}{4}M_{k_1k_2}^{k_3k_4} + \left| \frac{k_2k_4}{k_1k_3} \right| ^\frac{1}{4}M_{k_1k_3}^{k_2k_4} + \left| \frac{k_2k_3}{k_1k_4} \right| ^\frac{1}{4}M_{k_1k_4}^{k_2k_3} + \left| \frac{k_1k_4}{k_2k_3} \right| ^\frac{1}{4}M_{k_2k_3}^{k_1k_4} +\\+ & {} \left| \frac{k_1k_3}{k_2k_4} \right| ^\frac{1}{4}M_{k_2k_4}^{k_1k_3} + \left| \frac{k_1k_2}{k_3k_4} \right| ^\frac{1}{4}M_{k_3k_4}^{k_1k_2} \bigg ] \end{aligned}$$
(19)

Here

$$\begin{aligned} L_{k_1k_2}&= |k_1k_2| + k_1k_2\nonumber \\ M_{k_1k_2}^{k_3k_4}&= |k_1k_2|(|k_1+k_3|+|k_1+k_4|+|k_2+k_3|+|k_2+k_4|-2|k_1|-2|k_2|). \end{aligned}$$
(20)

To construct canonical transformation of general form we follow the book (Zakharov et al. 1992) and use auxiliary Hamiltonian :

$$\begin{aligned} \tilde{H}&=-i\int \tilde{V}^{k_1}_{k_2k_3}(b_{k_1}^*b_{k_2}b_{k_3}-b_{k_1}b_{k_2}^*b_{k_3}^*)\delta _{k_1-k_2-k_3} dk_1dk_2dk_3-\nonumber \\&-\frac{i}{3}\int \tilde{U}_{k_1k_2k_3}(b_{k_1}^*b_{k_2}^*b_{k_3}^*-b_{k_1}b_{k_2}b_{k_3})\delta _{k_1+k_2+k_3}dk_1dk_2dk_3,\\&+\frac{1}{2}\int (\tilde{\tilde{W}}_{k_1k_2}^{k_3k_4}+i\tilde{W}_{k_1k_2}^{k_3k_4})b_{k_1}^*b_{k_2}^*b_{k_3}b_{k_4}\delta _{k_1+k_2-k_3-k_4}dk_1dk_2dk_3dk_4-\nonumber \\&-\frac{i}{3}\int \tilde{G}_{k_1k_2k_3}^{k_4}(b_{k_1}^*b_{k_2}^*b_{k_3}^*b_{k_4}-b_{k_1}b_{k_2}b_{k_3}b_{k_4}^*)\delta _{k_1+k_2+k_3-k_4}dk_1dk_2dk_3dk_4-\nonumber \\&-\frac{i}{12}\int \tilde{R}_{k_1k_2k_3k_4}(b_{k_1}^*b_{k_2}^*b_{k_3}^*b_{k_4}^*-b_{k_2}b_{k_3}b_{k_4})\delta _{k_1+k_2+k_3+k_4}dk_1dk_2dk_3dk_4 \end{aligned}$$
(21)

with standard symmetry conditions for coefficients. Just mention that for \(\tilde{W}_{k_1k_2}^{k_3k_4}\) this condition is the following:

$$\begin{aligned} \tilde{W}_{k_1k_2}^{k_3k_4} = \tilde{W}_{k_2k_1}^{k_3k_4} = \tilde{W}_{k_1k_2}^{k_4k_3} = -\tilde{W}_{k_3k_4}^{k_1k_2}. \end{aligned}$$
(22)

Again, following Zakharov et al. (1992) general canonical transformation from \(b_k\) to \(a_k\) can be written as the series:

$$\begin{aligned}&a_k = b_k + \int \left[ 2\tilde{V}^{k_1}_{kk_2}b_{k_1}b_{k_2}^*\delta _{k_1-k-k_2} - \tilde{V}^k_{k_1k_2}b_{k_1}b_{k_2}\delta _{k-k_1-k_2} - \tilde{U}_{kk_1k_2}b_{k_1}^*b_{k_2}^*\delta _{k+k_1+k_2} \right] dk_1dk_2 \nonumber \\&+ \int \left[ A^{k}_{k_1k_2k_3}b_{k_1}b_{k_2}b_{k_3} + A^{kk_1}_{k_2k_3}b_{k_1}^*b_{k_2}b_{k_3} + A^{kk_1k_2}_{k_3}b_{k_1}^*b_{k_2}^*b_{k_3} + A^{kk_1k_2k_3}b_{k_1}^*b_{k_2}^*b_{k_3}^* \right] dk_1dk_2dk_3 \end{aligned}$$
(23)

Coefficients A with upper and lower indices are equal to:

$$\begin{aligned} A^{k}_{k_1k_2k_3}= & {} \left[ \frac{1}{3}\tilde{G}_{k_1k_2k_3}^{k}+ \tilde{V}_{k_1k-k_1}^{k}\tilde{V}_{k_2k_3}^{k_2+k_3} - \tilde{V}_{kk_1-k}^{k_1}\tilde{U}_{-k_2-k_3k_2k_3}\right] \delta _{k-k_1-k_2-k_3},\\A^{kk_1}_{k_2k_3}= & {} \left[ -i\tilde{\tilde{W}}_{kk_1}^{k_2k_3} + \tilde{W}_{kk_1}^{k_2k_3} - 2\tilde{V}_{k_2k-k_2}^{k}\tilde{V}_{k_1k_3-k_1}^{k_3} - \tilde{V}_{kk_1}^{k+k_1}\tilde{V}_{k_2k_3}^{k_2+k_3} + 2\tilde{V}_{kk_3-k}^{k_3}\tilde{V}_{k_2k_1-k_2}^{k_1} +\right. \\+ & {} \left. \tilde{U}_{-k-k_1kk_1}\tilde{U}_{-k_2-k_3k_2k_3} \right] \delta _{k+k_1-k_2-k_3},\\A^{kk_1k_2}_{k_3}= & {} \left[ -\tilde{G}_{kk_1k_2}^{k_3} +\tilde{V}_{k_3k-k_3}^{k}\tilde{U}_{-k_2-k_1k_2k_1} - \tilde{V}_{kk_3-k}^{k_3}\tilde{V}_{k_1k_2}^{k_1+k_2} +2\tilde{V}_{kk_1}^{k+k_1}\tilde{V}_{k_2k_3-k_2}^{k_3} - \right. \\- & {} \left. 2\tilde{U}_{-k-k_1kk_1}\tilde{V}_{k_3k_2-k_3}^{k_2} \right] \delta _{k+k_1+k_2-k_3},\\A^{kk_1k_2k_3}= & {} \left[ -\frac{1}{3}\tilde{R}_{kk_1k_2k_3} -\tilde{V}_{kk_1}^{k+k_1}\tilde{U}_{-k_2-k_3k_2k_3} + \tilde{V}_{k_2k_3}^{k_2+k_3}\tilde{U}_{-k-k_1kk_1} \right] \delta _{k+k_1+k_2+k_3}. \end{aligned}$$
(24)

Let us now substitute transformation (23) into the Hamiltonian (9) and calculate second, third and fourth order terms.

Collecting all cubic terms after substitution and making symmetrization one can get:

$$\begin{aligned}&\qquad H_3 =\int [V^{k_1}_{k_2k_3}-(\omega _{k_1}-\omega _{k_3}-\omega _{k_3})\tilde{V}^{k_1}_{k_2k_3}]b_{k_1}^*b_{k_2}b_{k_3} \delta _{k_1-k_2-k_3}dk_1dk_2dk_3 +\nonumber \\&+\frac{1}{3}\int [U_{k_1k_2k_3}-(\omega _{k_1}+\omega _{k_3}+\omega _{k_3})\tilde{U}_{k_1k_2k_3}]b_{k_1}^*b_{k_2}^*b_{k_3}^*\delta _{k_1+k_2+k_3}dk_1dk_2dk_3 + c.c. \end{aligned}$$
(25)

it is possible to cancel nonresonant both cubic and fourth order terms. If

$$\begin{aligned} \tilde{V}_{k_1k_2}^{k} = \frac{V_{k_1k_2}^{k}}{\omega _k-\omega _{k_1}-\omega _{k_2}},\qquad \tilde{U}_{kk_1k_2} = \frac{U_{kk_1k_2}}{\omega _k+\omega _{k_1}+\omega _{k_2}}. \end{aligned}$$
(26)

than \(H_3\) vanishes.

Counting all fourth terms, making symmetrization and calculating new \(H_4\) one can get

$$\begin{aligned} H_4&= \frac{1}{2}\int [W_{k_1k_2}^{k_3k_4} + D_{k_1k_2}^{k_3k_4}+ (\omega _{k_1} + \omega _{k_2} -\omega _{k_3} - \omega _{k_4}) (\tilde{W}_{k_1k_2}^{k_3k_4}-i\tilde{\tilde{W}}_{k_1k_2}^{k_3k_4})]b_{k_1}^*b_{k_2}^*b_{k_3}b_{k_4} \delta _{k_1+}\nonumber \\&\qquad {k_2{-}k_3{-}k_4}dk_1dk_2dk_3dk_4 +\\&+\frac{1}{3}\int \left[ (G_{k_1k_2k_3}^{k_4} + D_{k_1k_2k_3}^{k_4} -(\omega _{k_1} + \omega _{k_2} +\omega _{k_3} - \omega _{k_4})\tilde{G}_{k_1k_2k_3}^{k_4}) b_{k_1}^*b_{k_2}^*b_{k_3}^*b_{k_4} + c.c.\right] \delta _{k_1+}\nonumber \\&\qquad {k_2{+}k_3{-}k_4}dk_1dk_2dk_3dk_4 +\\&+\frac{1}{12} \int \left[ (R_{k_1k_2k_3k_4} +\!D_{k_1k_2k_3k_4} -(\omega _{k_1} +\!\omega _{k_2} +\!\omega _{k_3}+ \omega _{k_4}) \tilde{R}_{k_1k_2k_3k_4})b_{k_1}^*b_{k_2}^*b_{k_3}^*b_{k_4}^*+ c.c.\right] \delta _{k_1+}\nonumber \\&\qquad {k_2{+}k_3{+}k_4}dk_1dk_2dk_3dk_4. \end{aligned}$$
(27)

Here

$$\begin{aligned} D_{k_1k_2}^{k_3k_4}= & {} \tilde{V}^{k_1}_{k_3k_1-k_3}\tilde{V}^{k_4}_{k_2k_4-k_2} \left[ \omega _{k_1}-\omega _{k_3}-\omega _{k_1-k_3}+\omega _{k_4}-\omega _{k_2}-\omega _{k_4-k_2}\right] +\\+ & {} \tilde{V}^{k_2}_{k_3k_2-k_3}\tilde{V}^{k_4}_{k_1k_4-k_1} \left[ \omega _{k_2}-\omega _{k_3}-\omega _{k_2-k_3}+\omega _{k_4}-\omega _{k_1}-\omega _{k_4-k_1}\right] +\\+ & {} \tilde{V}^{k_1}_{k_4k_1-k_4}\tilde{V}^{k_3}_{k_2k_3-k_2} \left[ \omega _{k_1}-\omega _{k_4}-\omega _{k_1-k_4}+\omega _{k_3}-\omega _{k_2}-\omega _{k_3-k_2}\right] +\\+ & {} \tilde{V}^{k_2}_{k_4k_2-k_4}\tilde{V}^{k_3}_{k_1k_3-k_1} \left[ \omega _{k_2}-\omega _{k_4}-\omega _{k_2-k_4}+\omega _{k_3}-\omega _{k_1}-\omega _{k_3-k_1}\right] -\\- & {} \tilde{V}^{k_1+k_2}_{k_1k_2}\tilde{V}^{k_3+k_4}_{k_3k_4} \left[ \omega _{k_1+k_2}-\omega _{k_1}-\omega _{k_2}+\omega _{k_3+k_4}-\omega _{k_3}-\omega _{k_4}\right] -\\- & {} \tilde{U}_{-k_1-k_2k_1k_2}\tilde{U}_{-k_3-k_4k_3 k_4} \left[ \omega _{k_1+k_2}+\omega _{k_1}+\omega _{k_2}+\omega _{k_3+k_4}+\omega _{k_3}+\omega _{k_4}\right] ,\qquad \end{aligned}$$
(28)
$$\begin{aligned} D_{k_1k_2k_3}^{k_4}= & {} \tilde{V}^{k_1+k_2}_{k_1k_2}\tilde{V}^{k_4}_{k_3k_4-k_3} (\omega _{k_1+k_2}-\omega _{k_1}-\omega _{k_2} -\omega _{k_4}+\omega _{k_3}+\omega _{k_3-k_4})+\\+ & {} \tilde{V}^{k_1+k_3}_{k_1k_3}\tilde{V}^{k_4}_{k_2k_4-k_2} (\omega _{k_1+k_3}-\omega _{k_1}-\omega _{k_3} -\omega _{k_4}+\omega _{k_2}+\omega _{k_2-k_4})+\\+ & {} \tilde{V}^{k_2+k_3}_{k_2k_3}\tilde{V}^{k_4}_{k_1k_4-k_1} (\omega _{k_2+k_3}-\omega _{k_2}-\omega _{k_3} -\omega _{k_4}+\omega _{k_1}+\omega _{k_1-k_4})+\\+ & {} \tilde{U}_{-k_1-k_2k_1k_2}\tilde{V}^{k_3}_{k_4k_3-k_4} (\omega _{k_1+k_2}+\omega _{k_1}+\omega _{k_2} -\omega _{k_3}+\omega _{k_4}+\omega _{k_3-k_4})+\\+ & {} \tilde{U}_{-k_1-k_3k_1k_3}\tilde{V}^{k_2}_{k_4k_2-k_4} (\omega _{k_1+k_3}+\omega _{k_1}+\omega _{k_3} -\omega _{k_2}+\omega _{k_4}+\omega _{k_2-k_4})+\\+ & {} \tilde{U}_{-k_2-k_3k_2k_3}\tilde{V}^{k_1}_{k_4k_1-k_4} (\omega _{k_2+k_3}+\omega _{k_2}+\omega _{k_3} -\omega _{k_1}+\omega _{k_4}+\omega _{k_1-k_4}),\qquad \end{aligned}$$
(29)
$$\begin{aligned} D_{k_1k_2k_3k_4} =- & {} \tilde{U}_{-k_1-k_2k_1k_2}\tilde{V}^{k_3+k_4}_{k_3k_4} (\omega _{k_1+k_2}+\omega _{k_1}+\omega _{k_2} +\omega _{k_3+k_4}-\omega _{k_3}-\omega _{k_4})-\\- & {} \tilde{U}_{-k_1-k_3k_1k_3}\tilde{V}^{k_2+k_4}_{k_2k_4} (\omega _{k_1+k_3}+\omega _{k_1}+\omega _{k_3} +\omega _{k_2+k_4}-\omega _{k_2}-\omega _{k_4})-\\- & {} \tilde{U}_{-k_1-k_4k_1k_4}\tilde{V}^{k_3+k_2}_{k_3k_2} (\omega _{k_1+k_4}+\omega _{k_1}+\omega _{k_4} +\omega _{k_3+k_2}-\omega _{k_3}-\omega _{k_2})-\\- & {} \tilde{U}_{-k_2-k_3k_2k_3}\tilde{V}^{k_1+k_4}_{k_1k_4} (\omega _{k_2+k_3}+\omega _{k_2}+\omega _{k_3} +\omega _{k_1+k_4}-\omega _{k_1}-\omega _{k_4})-\\- & {} \tilde{U}_{-k_2-k_4k_2k_4}\tilde{V}^{k_1+k_3}_{k_1k_3} (\omega _{k_2+k_4}+\omega _{k_2}+\omega _{k_4} +\omega _{k_1+k_3}-\omega _{k_1}-\omega _{k_3})-\\- & {} \tilde{U}_{-k_3-k_4k_3k_4}\tilde{V}^{k_1+k_2}_{k_1k_2} (\omega _{k_3+k_4}+\omega _{k_3}+\omega _{k_4} +\omega _{k_1+k_2}-\omega _{k_1}-\omega _{k_2}).\qquad \end{aligned}$$
(30)

To cancel nonresonant fourth order terms in (27) relations given below must be valid:

$$\begin{aligned} \tilde{G}_{k_1k_2k_3}^{k_4}= & {} \frac{1}{\omega _{k_1} +\omega _{k_2}+\omega _{k_3}-\omega _{k_4}} (G_{k_1k_2k_3}^{k_4}+D_{k_1k_2k_3}^{k_4}),\\\tilde{R}_{k_1k_2k_3k_4}= & {} \frac{1}{\omega _{k_1} +\omega _{k_2}+\omega _{k_3}+\omega _{k_4}} (R_{k_1k_2k_3k_4}+D_{k_1k_2k_3k_4}). \end{aligned}$$
(31)

Now the Hamiltonian has only resonant four-wave interaction term (\(2\Leftrightarrow 2\)):

$$\begin{aligned} H= & {} \int \omega _k|b_k|^2 dk+\\+ & {} \frac{1}{2}\int [W_{k_1k_2}^{k_3k_4} +D_{k_1k_2}^{k_3k_4}+ (\omega _{k_1} + \omega _{k_2} -\omega _{k_3} - \omega _{k_4}) (\tilde{W}_{k_1k_2}^{k_3k_4}\nonumber \\&-i\tilde{\tilde{W}}_{k_1k_2}^{k_3k_4})]b_{k_1}^*b_{k_2}^*b_{k_3}b_{k_4} \delta _{k_1+k_2-k_3-k_4}dk_1dk_2dk_3dk_4 \end{aligned}$$
(32)

If we put

$$\begin{aligned} \tilde{W}_{k_1k_2}^{k_3k_4}-i\tilde{\tilde{W}}_{k_1k_2}^{k_3k_4} = 0, \end{aligned}$$
(33)

we obtain so-called Zakharov equation with the following Hamiltonian :

$$\begin{aligned} H= & {} \int \omega _k|b_k|^2 dk+\frac{1}{2}\int T_{k_1k_2}^{k_3k_4}b_{k_1}^*b_{k_2}^*b_{k_3}b_{k_4} \delta _{k_1+k_2-k_3-k_4}dk_1dk_2dk_3dk_4 \\T_{k_1k_2}^{k_3k_4}= & {} W_{k_1k_2}^{k_3k_4} +D_{k_1k_2}^{k_3k_4} \end{aligned}$$
(34)

At this moment the key point of the transformation takes place: we explicitly use property of vanishing of \(T_{k_1k_2}^{k_3k_4}\) on the resonant manifold and consider waves propagating in the same direction. Then we chose instead of (33) the following expression:

$$\begin{aligned} \tilde{W}_{k_1k_2}^{k_3k_4}-i\tilde{\tilde{W}}_{k_1k_2}^{k_3k_4}= & {} \frac{1}{\omega _{k_1} +\omega _{k_2}-\omega _{k_3}-\omega _{k_4}}(\tilde{T}_{k_1k_2}^{k_3k_4} - W_{k_1k_2}^{k_3k_4} - D_{k_1k_2}^{k_3k_4}), \end{aligned}$$
(35)

here

$$\begin{aligned} \tilde{T}_{k_2k_3}^{kk_1}= \frac{\theta (k)\theta (k_1)\theta (k_2)\theta (k_3)}{8\pi }\left[ (kk_1(k+k_1) + k_2k_3(k_2+k_3))\right. - \\\left. -(kk_2|k-k_2| + kk_3|k-k_3| + k_1k_2|k_1-k_2| + k_1k_3|k_1-k_3) \right] , \end{aligned}$$
(36)

This coefficient \(\tilde{T}_{k_2k_3}^{kk_1}\) gives us simple Hamiltonian (11).

Now we can calculate symmetrized coefficients A of the cubic part of the transformation:

$$\begin{aligned}&A^{k_1k_2}_{k_3k_4} = \frac{1}{\omega _{k_1} +\omega _{k_2}-\!\omega _{k_3}-\!\omega _{k_4}} \left[ \tilde{T}_{k_1k_2}^{k_3k_4} - W_{k_1k_2}^{k_3k_4} + 2(U_{-k_1-k_2k_1k_2}\tilde{U}_{-k_3-k_4k_3 k_4} +\! V^{k_1+k_2}_{k_1k_2}\tilde{V}^{k_3+k_4}_{k_3k_4} \right. \nonumber \\&- \left. V^{k_1}_{k_3k_1-k_3}\tilde{V}^{k_4}_{k_2k_4-k_2} - \tilde{V}^{k_2}_{k_3k_2-k_3} V^{k_4}_{k_1k_4-k_1}- V^{k_1}_{k_4k_1-k_4}\tilde{V}^{k_3}_{k_2k_3-k_2} - \tilde{V}^{k_2}_{k_4k_2-k_4}V^{k_3}_{k_1k_3-k_1})\right] \end{aligned}$$
(37)
$$\begin{aligned}&A^{k_1k_2k_3k_4} = \frac{1}{3(\omega _{k_1} +\omega _{k_2}+\omega _{k_3}+\omega _{k_4})}\left[ -R_{k_1k_2k_3k_4}+ 2(U_{-k_1-k_2k_1k_2}\tilde{V}^{k_3+k_4}_{k_3k_4} + U_{-k_1-k_3k_1k_3}\tilde{V}^{k_2+k_4}_{k_2k_4}\right. \nonumber \\&+ \left. U_{-k_1-k_4k_1k_4}\tilde{V}^{k_2+k_3}_{k_2k_3} + \tilde{U}_{-k_2-k_3k_2k_3}V^{k_1+k_4}_{k_1k_4}+ \tilde{U}_{-k_2-k_4k_2k_4}V^{k_1+k_3}_{k_1k_3} + \tilde{U}_{-k_3-k_4k_3k_4}V^{k_1+k_2}_{k_1k_2})\right] \end{aligned}$$
(38)
$$\begin{aligned}&A^{k_1k_2k_3}_{k_4}=\frac{-1}{\omega _{k_1} +\omega _{k_2}+\omega _{k_3}-\omega _{k_4}}\left[ G_{k_1k_2k_3}^{k_4} +2(V^{k_1+k_2}_{k_1k_2}\tilde{V}^{k_4}_{k_3k_4-k_3} + V^{k_1+k_3}_{k_1k_3}\tilde{V}^{k_4}_{k_2k_4-k_2}\right. \nonumber \\ +&\left. U_{-k_1-k_2k_1k_2}\tilde{V}^{k_3}_{k_4k_3-k_4} +\! U_{-k_1-k_3k_1k_3}\tilde{V}^{k_2}_{k_4k_2-k_4} \right. \left. -\!\tilde{V}^{k_2+k_3}_{k_2k_3}V^{k_4}_{k_1k_4-k_1} -\! \tilde{U}_{-k_2-k_3k_2k_3}V^{k_1}_{k_4k_1-k_4})\right] \nonumber \\ \end{aligned}$$
(39)
$$\begin{aligned}&A^{k_1}_{k_2k_3k_4}=\frac{-1}{3(\omega _{k_1} -\omega _{k_2}-\omega _{k_3}-\omega _{k_4})}\left[ G_{k_2k_3k_4}^{k_1} - 2(\tilde{V}^{k_2+k_3}_{k_2k_3} V^{k_1}_{k_4k_1-k_4} + \tilde{V}^{k_2+k_4}_{k_2k_4} V^{k_1}_{k_3k_1-k_3} \right. \nonumber \\&\left. +\tilde{V}^{k_3+k_4}_{k_3k_4} V^{k_1}_{k_2k_1-k_2} +\tilde{U}_{-k_2-k_3k_2k_3} V^{k_4}_{k_1k_4-k_1}+ \tilde{U}_{-k_2-k_4k_2k_4} V^{k_3}_{k_1k_3-k_1}+ \tilde{U}_{-k_3-k_4k_3 k_4} V^{k_2}_{k_1k_2-k_1})\right] .\nonumber \\ \end{aligned}$$
(40)

Below we calculate \(A^{k_1}_{k_2k_3k_4}\), \(A^{k_1k_2k_3k_4}\), \(A^{k_1k_2k_3}_{k_4}\) and \(A_{k_1k_2}^{k_3k_4}\) for the case when canonical variable \(b_k\) has harmonics with positive k only.

Let us start with \(A^{k_1}_{k_2k_3k_4}\), expression (40). According to \(\delta \)-function in (24) \(k_1\) is also positive. One can finally get:

$$\begin{aligned} A^{k_1}_{k_2k_3k_4} = \frac{\omega _{k_1} +\omega _{k_2}+\omega _{k_3}+\omega _{k_4}}{48\pi g}k_1(k_1k_2k_3k_4)^{\frac{1}{4}}. \end{aligned}$$
(41)

Coefficient \(A^{k_1k_2k_3k_4}\) has to be calculated for negative \(k_1\) (according to \(\delta \)-function in (24), so we will calculate it as \(A^{-k_1k_2k_3k_4}\).

$$\begin{aligned} A^{-k_1k_2k_3k_4} = \frac{\omega _{k_1} -\omega _{k_2}-\omega _{k_3}-\omega _{k_4}}{48\pi g}k_1(k_1k_2k_3k_4)^{\frac{1}{4}}. \end{aligned}$$
(42)

Coefficient \(A^{k_1k_2k_3}_{k_4}\) has to be calculated both for positive and negative \(k_1\). For \(k_i>0\) the following is valid:

$$\begin{aligned} A^{k_1k_2k_3}_{k_4} = \frac{\omega _{k_1} +\omega _{k_2}+\omega _{k_3}+\omega _{k_4}}{16\pi g}k_1(k_1k_2k_3k_4)^{\frac{1}{4}}. \end{aligned}$$
(43)

For \(k_1<0\) we will calculate it as \(A^{-k_1k_2k_3}_{k_4}\). Let us start with the case \(k_4>k_2,k_3>k_1\):

$$\begin{aligned} A^{-k_1k_2k_3}_{k_4}= & {} \frac{\omega _{k_4} +\omega _{k_3}+\omega _{k_2}-\omega _{k_1}}{16 \pi g}(k_1k_2k_3k_4)^{\frac{1}{4}}k_1\frac{3 \sqrt{k_1k_4}-\sqrt{k_2k_3} }{\sqrt{k_1k_4}+\sqrt{k_2k_3}} \end{aligned}$$
(44)

In the case \(k_2>k_1,k_4>k_3\):

$$\begin{aligned} A^{-k_1k_2k_3}_{k_4} = \frac{\omega _{k_4}+\omega _{k_3}+\omega _{k_2}-\omega _{k_1}}{16 \pi g}(k_1k_2k_3k_4)^{\frac{1}{4}}k_1\frac{\sqrt{k_1k_4}(2k_3+k_1)-\sqrt{k_2k_3}(2k_3-k_1)}{\sqrt{k_1k_4}+\sqrt{k_2k_3}}\nonumber \\ \end{aligned}$$
(45)

In the case \(k_3>k_1,k_4>k_2\):

$$\begin{aligned} A^{-k_1k_2k_3}_{k_4}=\frac{\omega _{k_4}+\!\omega _{k_3}+\!\omega _{k_2}-\!\omega _{k_1}}{16 \pi g}(k_1k_2k_3k_4)^{\frac{1}{4}}k_1\frac{\sqrt{k_1k_4}(2k_2+k_1)-\!\sqrt{k_2k_3}(2k_2-\!k_1)}{\sqrt{k_1k_4}+\sqrt{k_2k_3}}\nonumber \\ \end{aligned}$$
(46)

In the case \(k_1>k_2,k_3>k_4\):

$$\begin{aligned} A^{-k_1k_2k_3}_{k_4}=\!\frac{\omega _{k_4}+\!\omega _{k_3}+\!\omega _{k_2}-\!\omega _{k_1}}{16 \pi g}(k_1k_2k_3k_4)^{\frac{1}{4}}k_1\frac{\sqrt{k_1k_4}(2k_4 + k_1)-\sqrt{k_2k_3}(2k_4 -k_1)}{\sqrt{k_1k_4}+\sqrt{k_2k_3}}\nonumber \\ \end{aligned}$$
(47)

Coefficient \(A^{k_1k_2}_{k_3k_4}\) has to be calculated both for positive and negative \(k_1\). Below we calculate \(A^{k_1k_2}_{k_3k_4}\) for the case \(k_1,k_2,k_3,k_4>0\). Let us start with the case \(k_2>k_3,k_4>k_1\):

$$\begin{aligned} A^{k_1k_2}_{k_3k_4}= & {} \frac{1}{\omega _{k_1} +\omega _{k_2}-\omega _{k_3}-\omega _{k_4}}\left[ \tilde{T}_{k_1k_2}^{k_3k_4}-\!\frac{(k_1k_2k_3k_4)^{\frac{1}{4}}}{8\pi }k_1\left( 3\sqrt{k_1k_2}+\!\sqrt{k_3k_4} \right) \right] \nonumber \\ \end{aligned}$$
(48)

In the case \(k_1>k_3,k_4>k_2\):

$$\begin{aligned} A^{k_1k_2}_{k_3k_4}= & {} \frac{1}{\omega _{k_1} +\omega _{k_2}-\omega _{k_3}-\omega _{k_4}}\times \\\times & {} \left[ \tilde{T}_{k_1k_2}^{k_3k_4}-\frac{(k_1k_2k_3k_4)^{\frac{1}{4}}}{8\pi }\left( \sqrt{k_1k_2}(2k_2+k_1)+\sqrt{k_3k_4}(2k_2-k_1) \right) \right] \quad \end{aligned}$$
(49)

In the case \(k_4>k_1,k_2>k_3\):

$$\begin{aligned} A^{k_1k_2}_{k_3k_4}= & {} \frac{1}{\omega _{k_1} +\omega _{k_2}-\omega _{k_3}-\omega _{k_4}}\times \\\times & {} \left[ \tilde{T}_{k_1k_2}^{k_3k_4}-\frac{(k_1k_2k_3k_4)^{\frac{1}{4}}}{8\pi }\left( \sqrt{k_1k_2}(2k_3+k_1)+\sqrt{k_3k_4}(2k_3-k_1) \right) \right] \quad \end{aligned}$$
(50)

In the case \(k_3>k_1,k_2>k_4\):

$$\begin{aligned} A^{k_1k_2}_{k_3k_4}= & {} \frac{1}{\omega _{k_1} +\omega _{k_2}-\omega _{k_3}-\omega _{k_4}}\times \\\times & {} \left[ \tilde{T}_{k_1k_2}^{k_3k_4}-\frac{(k_1k_2k_3k_4)^{\frac{1}{4}}}{8\pi }\left( \sqrt{k_1k_2}(2k_4+k_1)+\sqrt{k_3k_4}(2k_4-k_1) \right) \right] \quad \end{aligned}$$
(51)

For \(k_1<0\) we will calculate it as \(A^{-k_1k_2}_{k_3k_4}\) and \(k_1,k_2,k_3,k_4>0\):

$$\begin{aligned} A^{-k_1k_2}_{k_3k_4}= & {} \frac{1}{\omega _{k_1} +\omega _{k_2}-\omega _{k_3}-\omega _{k_4}}\left[ \frac{(k_1k_2k_3k_4)^{\frac{1}{4}}}{8\pi }k_1\left( \sqrt{k_1k_4}+\sqrt{k_1k_3}-\sqrt{k_3k_4} \right) \right] = \\= & {} \frac{(k_1k_2k_3k_4)^{\frac{1}{4}}}{16\pi g}k_1\left( \omega _{k_2}+\omega _{k_3}+\omega _{k_4} - \omega _{k_1}\right) \end{aligned}$$
(52)

It appears that if spectrum of b(x) consists of harmonics with positive k only, transformation from \(b_k\) to \(\eta _k\) and \(\psi _k\) can be considerably simplified. To prove that, let us calculate \(\eta _k\) and \(\psi _k\) for positive k using transformations (23) and (7). To recover \(\eta _k\) and \(\psi _k\) for negative k one can use the following relations:

$$\begin{aligned} \eta _{-k} = \eta _k^*, \qquad \psi _{-k} = \psi _k^*. \end{aligned}$$
(53)

But first let us write \(\eta _k\) and \(\psi _k\) as a power series of \(b_k\) up to the third order:

$$\begin{aligned} \eta _k = \eta _k^{(1)} + \eta _k^{(2)} + \eta _k^{(3)}, \qquad \psi _k = \psi _k^{(1)} + \psi _k^ {(2)} + \psi _k^{(3)}. \end{aligned}$$
(54)

Obviously

$$\begin{aligned} \eta _k^{(1)} = \sqrt{\frac{\omega _k}{2g}}[b_k+b_{-k}^*], \qquad \psi _k^{(1)} = -i\sqrt{\frac{g}{2\omega _k}}[b_k-b_{-k}^*]. \end{aligned}$$
(55)

Or

$$\begin{aligned} \eta ^{(1)}(x) = \frac{1}{\sqrt{2}g^{\frac{1}{4}}}(\hat{k}^{\frac{1}{4}}b(x)+\hat{k}^{\frac{1}{4}}b(x)^*), \quad \qquad \psi ^{(1)}(x) = -i\frac{g^{\frac{1}{4}}}{\sqrt{2}}(\hat{k}^{-\frac{1}{4}}b(x)-\hat{k}^{-\frac{1}{4}}b(x)^*). \end{aligned}$$
(56)

Operators \(\hat{k}^{\alpha }\) act in Fourier space as multiplication by \(|k|^\alpha \).

Quadratic terms in (54) are the following:

$$\begin{aligned} \eta _k^{(2)}= & {} \sqrt{\frac{\omega _k}{2g}}\left[ 2\int (\tilde{V}^{k_2}_{kk_1} +\tilde{V} ^{k_1}_{-kk_2})b_{k_1}^*b_{k_2}\delta _{k+k_1-k_2}dk_1dk_2 \right. - \\- & {} \left. \int (\tilde{V}^{k}_{k_1k_2} + \tilde{U}_{-kk_1k_2})b_{k_1}b_{k_2}\delta _{k-k_1-k_2}dk_1dk_2\right] ,\\\psi _k^{(2)}= & {} -i\sqrt{\frac{g}{2\omega _k}}\left[ 2\int (\tilde{V}^{k_2}_{kk_1}-\!\tilde{V}^{k_1}_{-kk_2})b_{k_1}^*b_{k_2}\delta _{k+k_1-k_2}dk_1dk_2- \right. \\- & {} \left. \int (\tilde{V}^{k}_{k_1k_2}-\!\tilde{U}_{-kk_1k_2})b_{k_1}b_{k_2}\delta _{k-k_1-k_2}dk_1dk_2\right] . \end{aligned}$$
(57)

All coefficients in (57) can be easily calculated using expressions (18), (26), properties (53) and little algebra. The following formulae are valid for both positive and negative k:

$$\begin{aligned} \eta _k^{(2)}= & {} \frac{|k|}{4\sqrt{2g\pi }} \left[ \int k_1^{\frac{1}{4}}b_{k_1}k_2^{\frac{1}{4}}b_{k_2}\delta _{k-k_1-k_2}dk_1dk_2 + \int k_1^{\frac{1}{4}}b_{k_1}^*k_2^{\frac{1}{4}}b_{k_2}^*\delta _{k+k_1+k_2}dk_1dk_2 \right. \\- & {} \left. 2\int k_1^{\frac{1}{4}}b_{k_1}^*k_2^{\frac{1}{4}}b_{k_2}\delta _{k+k_1-k_2}dk_1dk_2 \right] , \\\psi _k^{(2)}= & {} -\frac{i}{4\sqrt{2\pi }} \left[ \int (\sqrt{k_1}+\sqrt{k_2})k_1^{\frac{1}{4}}b_{k_1}k_2^{\frac{1}{4}}b_{k_2}\delta _{k-k_1-k_2}dk_1dk_2 - \right. \\- & {} \left. \int (\sqrt{k_1}+\sqrt{k_2})k_1^{\frac{1}{4}}b_{k_1}^*k_2^{\frac{1}{4}}b_{k_2}^*\delta _{k+k_1+k_2}dk_1dk_2 -\right. \\&\left. -2\mathbf{{sign}}(k)\int (\sqrt{k_1}+\sqrt{k_2})k_1^{\frac{1}{4}}b_{k_1}^*k_2^{\frac{1}{4}}b_{k_2}\delta _{k+k_1-k_2}dk_1dk_2 \right] . \end{aligned}$$
(58)

Applying Fourier transformation to (58) one can get

$$\begin{aligned} \eta ^{(2)}(x)= & {} \frac{\hat{k}}{4\sqrt{g}}[\hat{k}^{\frac{1}{4}}b(x) - \hat{k}^{\frac{1}{4}}b^*(x)]^2,\\\psi ^{(2)}(x)= & {} \frac{i}{2}[\hat{k}^{\frac{1}{4}}b^*(x)\hat{k}^{\frac{3}{4}}b^*(x) - \hat{k}^{\frac{1}{4}}b(x)\hat{k}^{\frac{3}{4}}b(x)]+ \\+ & {} \frac{1}{2}\hat{H}[\hat{k}^{\frac{1}{4}}b(x)\hat{k}^{\frac{3}{4}}b^*(x) + \hat{k}^{\frac{1}{4}}b^*(x)\hat{k}^{\frac{3}{4}}b(x)]. \end{aligned}$$
(59)

Here \(\hat{H}\)—is Hilbert transformation with eigenvalue \(i\mathbf{{sign}}(k)\).

Cubic terms in (54) are the following (k, \(k_1\), \(k_2\) and \(k_3\) are positive):

$$\begin{aligned} \eta _k^{(3)}= & {} \sqrt{\frac{\omega _k}{2g}}\left[ \int (A^{k}_{k_1k_2k_3} + A_{-kk_1k_2k_3})b_{k_1}b_{k_2}b_{k_3}\delta _{k-k_1-k_2-k_3}dk_1dk_2dk_3 \right. +\\+ & {} \int (A^{kk_1}_{k_2k_3} + A^{-kk_2k_3}_{k_1})b_{k_1}^*b_{k_2}b_{k_3}\delta _{k+k_1-k_2-k_3}dk_1dk_2dk_3 +\\+ & {} \left. \int (A^{kk_1k_2}_{k_3} + A^{-kk_3}_{k_1k_2})b_{k_1}^*b_{k_2}^*b_{k_3}\delta _{k+k_1+k_2-k_3}dk_1dk_2dk_3 \right] ,\\\psi _k^{(3)}= & {} -i\sqrt{\frac{g}{2\omega _k}}\left[ \int (A^{k}_{k_1k_2k_3} - A_{-kk_1k_2k_3})b_{k_1}b_{k_2}b_{k_3}\delta _{k-k_1-k_2-k_3}dk_1dk_2dk_3 \right. +\\+ & {} \int (A^{kk_1}_{k_2k_3} - A^{-kk_2k_3}_{k_1})b_{k_1}^*b_{k_2}b_{k_3}\delta _{k+k_1-k_2-k_3}dk_1dk_2dk_3 +\\+ & {} \left. \int (A^{kk_1k_2}_{k_3} - A^{-kk_3}_{k_1k_2})b_{k_1}^*b_{k_2}^*b_{k_3}\delta _{k+k_1+k_2-k_3}dk_1dk_2dk_3 \right] \end{aligned}$$
(60)

Some of coefficients in (60) can be easily calculated using expressions for A and little algebra :

$$\begin{aligned} A^{k}_{k_1k_2k_3} + A_{-kk_1k_2k_3}= & {} \frac{\omega _{k}}{24\pi g}k(kk_1k_2k_3)^{\frac{1}{4}}\\A^{k}_{k_1k_2k_3} - A_{-kk_1k_2k_3}= & {} \frac{\omega _{k_1}+\omega _{k_2}+\omega _{k_3}}{24\pi g}k(kk_1k_2k_3)^{\frac{1}{4}} \end{aligned}$$
(61)
$$\begin{aligned} A^{kk_1k_2}_{k_3} + A^{-kk_3}_{k_1k_2}= & {} \frac{\omega _{k_1}+\omega _{k_2}+\omega _{k_3}}{8\pi g}k(kk_1k_2k_3)^{\frac{1}{4}}\\A^{kk_1k_2}_{k_3} - A^{-kk_3}_{k_1k_2}= & {} \frac{\omega _{k}}{8\pi g}k(kk_1k_2k_3)^{\frac{1}{4}} \end{aligned}$$
(62)

For \(k,k_1,k_2,k_3>0\)

$$\begin{aligned}&A^{kk_1}_{k_2k_3} + A^{-kk_2k_3}_{k_1} = \frac{\tilde{T}_{kk_1}^{k_2k_3}}{\omega _{k} +\omega _{k_1}-\omega _{k_2}-\omega _{k_3}} - \frac{\omega _{k}}{8\pi g}(kk_1k_2k_3)^{\frac{1}{4}}k-\\&-\frac{(kk_1k_2k_3)^{\frac{1}{4}}}{8\pi g}min(k,k_1,k_2,k_3)\times \\&\times \left[ \frac{\sqrt{kk_1}+\!\sqrt{k_2k_3}}{\sqrt{kk_1}-\sqrt{k_2k_3}}\left( \omega _{k}+\!\omega _{k_1}+\!\omega _{k_2}+\!\omega _{k_3}\right) +\! \frac{\sqrt{kk_1}-\!\sqrt{k_2k_3}}{\sqrt{kk_1}+\!\sqrt{k_2k_3}}\left( \omega _{k} -\omega _{k_1}-\omega _{k_2}-\!\omega _{k_3}\right) \right] \\&A^{kk_1}_{k_2k_3} - A^{-kk_2k_3}_{k_1} = \frac{\tilde{T}_{kk_1}^{k_2k_3}}{\omega _{k} +\omega _{k_1}-\omega _{k_2}-\omega _{k_3}} - \frac{\omega _{k_1}+\omega _{k_2}+\omega _{k_3}}{8\pi g}(kk_1k_2k_3)^{\frac{1}{4}}k-\\&-\frac{(kk_1k_2k_3)^{\frac{1}{4}}}{8\pi g}min(k,k_1,k_2,k_3)\times \\&\times \left[ \frac{\sqrt{kk_1}+\sqrt{k_2k_3}}{\sqrt{kk_1}-\!\sqrt{k_2k_3}}\left( \omega _{k}+\!\omega _{k_1}+\omega _{k_2}+\omega _{k_3}\right) - \frac{\sqrt{kk_1}-\!\sqrt{k_2k_3}}{\sqrt{kk_1}+\sqrt{k_2k_3}}\left( \omega _{k} -\omega _{k_1}-\!\omega _{k_2}-\!\omega _{k_3}\right) \right] \nonumber \\ \end{aligned}$$
(63)

Using properties (53) expressions for \(\eta _k^{(3)}\) and \(\psi _k^{(3)}\) can be extended for negative k, so that the following formulae are valid for both positive and negative k:

$$\begin{aligned}&\eta _k^{(3)} = \frac{k^2}{24\pi g^{\frac{3}{4}} \sqrt{2}}\int k_1^{\frac{1}{4}}b_{k_1} k_2^{\frac{1}{4}}b_{k_2} k_3^{\frac{1}{4}}b_{k_3}\delta _{k-k_1-k_2-k_3}dk_1dk_2dk_3 +\\&+\frac{k^2}{24\pi g^{\frac{3}{4}} \sqrt{2}}\int k_1^{\frac{1}{4}}b_{k_1}^* k_2^{\frac{1}{4}}b_{k_2}^* k_3^{\frac{1}{4}}b_{k_3}^*\delta _{k+k_1+k_2+k_3}dk_1dk_2dk_3+\\&+\int \left[ \sqrt{\frac{\omega _k}{2g}}(A^{kk_1}_{k_2k_3}+\!A^{-kk_2k_3}_{k_1})+ \frac{k^{\frac{3}{2}}(k_1k_2k_3)^{\frac{1}{4}}\left( k_1^{\frac{1}{2}}+k_2^{\frac{1}{2}}+k_3^{\frac{1}{2}}\right) }{8\pi g^{\frac{3}{4}}\sqrt{2}}\right] \times \\&\times \; b_{k_1}^*b_{k_2}b_{k_3}\delta _{k+\!k_1-\!k_2-\!k_3}dk_1dk_2dk_3+\\&+\int \left[ \sqrt{\frac{\omega _k}{2g}}(A^{-kk_3}_{k_2k_1}+\!A^{kk_2k_1}_{k_3})+ \frac{k^{\frac{3}{2}}(k_1k_2k_3)^{\frac{1}{4}}\left( k_1^{\frac{1}{2}}+k_2^{\frac{1}{2}}+k_3^{\frac{1}{2}}\right) }{8\pi g^{\frac{3}{4}}\sqrt{2}}\right] \times \\&\times \; b_{k_1}^*b_{k_2}^*b_{k_3}\delta _{k+k_1+k_2-\!k_3}dk_1dk_2dk_3 \end{aligned}$$
(64)
$$\begin{aligned} \psi _k^{(3)}&=-i\frac{|k|}{24\pi g^{\frac{1}{4}}\sqrt{2}}\int \left( k_1^{\frac{3}{4}}k_2^{\frac{1}{4}}k_3^{\frac{1}{4}}+\!k_1^{\frac{1}{4}}k_2^{\frac{3}{4}}k_3^{\frac{1}{4}}+\!k_1^{\frac{1}{4}}k_2^{\frac{1}{4}}k_3^{\frac{3}{4}}\right) b_{k_1}b_{k_2}b_{k_3}\delta _{k-k_1-k_2-k_3}dk_1dk_2dk_3 +\\&+i\frac{|k|}{24\pi g^{\frac{1}{4}}\sqrt{2}}\int \left( k_1^{\frac{3}{4}}k_2^{\frac{1}{4}}k_3^{\frac{1}{4}}+k_1^{\frac{1}{4}}k_2^{\frac{3}{4}}k_3^{\frac{1}{4}}+k_1^{\frac{1}{4}}k_2^{\frac{1}{4}}k_3^{\frac{3}{4}}\right) b_{k_1}^*b_{k_2}^*b_{k_3}^*\delta _{k+k_1+k_2+k_3}dk_1dk_2dk_3+\\&+\int \left[ -i\sqrt{\frac{g}{2\omega _k}}(A^{kk_1}_{k_2k_3} - A^{-kk_2k_3}_{k_1})+i\frac{k^{\frac{3}{2}}\left( k_1k_2k_3\right) ^{\frac{1}{4}}}{8\pi g^{\frac{1}{4}}\sqrt{2}}\right] b_{k_1}^*b_{k_2}b_{k_3}\delta _{k+k_1-k_2-k_3}dk_1dk_2dk_3+\\&+\int \left[ i\sqrt{\frac{g}{2\omega _k}}(A^{-kk_3}_{k_2k_1} - A^{kk_2k_1}_{k_3})-i\frac{k^{\frac{3}{2}}\left( k_1k_2k_3\right) ^{\frac{1}{4}}}{8\pi g^{\frac{1}{4}}\sqrt{2}}\right] b_{k_1}^*b_{k_2}^*b_{k_3}\delta _{k+k_1+k_2-k_3}dk_1dk_2dk_3 \end{aligned}$$
(65)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dyachenko, A.I., Kachulin, D.I., Zakharov, V.E. (2016). Freak-Waves: Compact Equation Versus Fully Nonlinear One. In: Pelinovsky, E., Kharif, C. (eds) Extreme Ocean Waves. Springer, Cham. https://doi.org/10.1007/978-3-319-21575-4_2

Download citation

Publish with us

Policies and ethics