Skip to main content

Multiparametric MRI (mpMRI): Guided Focal Therapy

  • Chapter
The Prostate Cancer Dilemma

Abstract

Approximately one in seven men will be diagnosed with prostate cancer during his lifetime. PSA screening has been blamed for increased rates of cancer detection, leading to subsequent overtreatment of disease. Overuse of definitive therapy has produced significant burdens, including excess costs, increasing patient morbidities, and decreased quality of life. Thus, there has been an increasing interest in minimally invasive focal therapies to treat prostate cancer. Advances in image-guided therapy have begun to emerge—utilizing the accurate tumor localization and improved disease staging of multiparametric MRI (mpMRI). MpMRI-guided therapies can potentially achieve equivalent oncologic efficacy to traditional whole gland therapies such as surgery and radiation, while avoiding the side effects of conventional treatment. The purpose of this chapter is to review briefly the basis of various focal therapy techniques such as cryotherapy, high intensity focused ultrasound, and laser interstitial therapy, and to discuss the results of recent clinical trials that demonstrate early outcomes in patients with prostate cancer treated with these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klotz L. Active surveillance: patient selection. Curr Opin Urol. 2013;23(3):239–44.

    PubMed  Google Scholar 

  2. Chou R, Croswell JM, Dana T, Bougatsos C, Blazina I, Fu R, et al. Screening for prostate cancer: a review of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med. 2011;155(11):762–71.

    Article  PubMed  Google Scholar 

  3. Schröder FH, Hugosson J, Roobol MJ, Tammela TLJ, Zappa M, Nelen V, et al. Screening and prostate cancer mortality: results of the European Randomised Study of Screening for Prostate Cancer (ERSPC) at 13 years of follow-up. Lancet. 2014;384(9959):2027–35.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Wilt TJ, Brawer MK, Jones KM, Barry MJ, Aronson WJ, Fox S, et al. Radical prostatectomy versus observation for localized prostate cancer. N Engl J Med. 2012;367(3):203–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Stephenson SK, Chang EK, Marks LS. Screening and detection advances in magnetic resonance image-guided prostate biopsy. Urol Clin North Am. 2014;41(2):315–26.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Da Rosa MR, Milot L, Sugar L, Vesprini D, Chung H, Loblaw A, et al. A prospective comparison of MRI-US fused targeted biopsy versus systemic ultrasound-guided biopsy for detecting clinically significant prostate cancer in patients on active surveillance. J Magn Reson Imaging. 2014;21:00.

    Google Scholar 

  7. Fradet V, Kurhanewicz J, Cowan JE, Karl A, Coakley FV, Shinohara K, et al. Prostate cancer managed with active surveillance: role of anatomic MR imaging and MR spectroscopic imaging. Radiology. 2010;256(1):176–83.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Turkbey B, Rastinehad AR, Linehan WM, Wood BJ, Pinto PA. Prostate cancer: can multiparametric MR imaging help identify patients who are candidates for active surveillance? Radiology. 2013;268(1):144–52.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Turkbey B, Mani H, Shah V, Rastinehad AR, Bernardo M, Pohida T, et al. Multiparametric 3T prostate magnetic resonance imaging to detect cancer: histopathological correlation using prostatectomy specimens processed in customized magnetic resonance imaging based molds. J Urol. 2011;186(5):1818–24.

    Article  PubMed  Google Scholar 

  10. Yerram NK, Volkin D, Turkbey B, Nix J, Hoang AN, Vourganti S, et al. Low suspicion lesions on multiparametric magnetic resonance imaging predict for the absence of high-risk prostate cancer. BJU Int. 2012;110(11 Pt B):E783–8.

    Google Scholar 

  11. Siddiqui MM, Rais-Bahrami S, Turkbey B, George AK, Rothwax J, Shakir N, et al. Comparison of MR/ultrasound fusion–guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA. 2015;313(4):390.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Baco E, Ukimura O, Rud E, Vlatkovic L, Svindland A, Aron M, et al. Magnetic resonance imaging-transectal ultrasound image-fusion biopsies accurately characterize the index tumor: correlation with step-sectioned radical prostatectomy specimens in 135 patients. Eur Urol. 2014;17.

    Google Scholar 

  13. Turkbey B, Mani H, Aras O, Rastinehad AR, Shah V, Bernardo M, et al. Correlation of magnetic resonance imaging tumor volume with histopathology. J Urol. 2012;188(4):1157–63.

    Article  PubMed  Google Scholar 

  14. Cornud F, Khoury G, Bouazza N, Beuvon F, Peyromaure M, Flam T, et al. Tumor target volume for focal therapy of prostate cancer-does multiparametric magnetic resonance imaging allow for a reliable estimation? J Urol. 2014;191(5):1272–9.

    Article  CAS  PubMed  Google Scholar 

  15. Cooper SM, Dawber RP. The history of cryosurgery. J R Soc Med. 2001;94(4):196–201.

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Copper IS. Cryogenic surgery: a new method of destruction or extirpation of benign or malignant tissues. N Engl J Med. 1963;268:743–9.

    Article  CAS  PubMed  Google Scholar 

  17. Finley DS, Pouliot F, Miller DC, Belldegrun AS. Primary and salvage cryotherapy for prostate cancer. Urol Clin North Am. 2010;37(1):67–82. Table of Contents.

    Article  PubMed  Google Scholar 

  18. Rees J, Patel B, MacDonagh R, Persad R. Cryosurgery for prostate cancer. BJU Int. 2004;93(6):710–4.

    Article  CAS  PubMed  Google Scholar 

  19. Tatli S, Acar M, Tuncali K, Morrison PR, Silverman S. Percutaneous cryoablation techniques and clinical applications. Diagn Interv Radiol. 2010;16(1):90–5.

    PubMed  Google Scholar 

  20. Gangi A, Tsoumakidou G, Abdelli O, Buy X, de Mathelin M, Jacqmin D, et al. Percutaneous MR-guided cryoablation of prostate cancer: initial experience. Eur Radiol. 2012;22(8):1829–35.

    Article  PubMed  Google Scholar 

  21. Abdelaziz S, Esteveny L, Renaud P, Bayle B, Barbé L, De Mathelin M, et al. Design considerations for a novel MRI compatible manipulator for prostate cryoablation. Int J Comput Assist Radiol Surg. 2011;6(6):811–9.

    Article  CAS  PubMed  Google Scholar 

  22. Caviezel A, Terraz S, Schmidlin F, Becker C, Iselin CE. Percutaneous cryoablation of small kidney tumours under magnetic resonance imaging guidance: medium-term follow-up. Scand J Urol Nephrol. 2008;42(5):412–6.

    Article  PubMed  Google Scholar 

  23. Josan S, Bouley DM, van den Bosch M, Daniel BL, Butts PK. MRI-guided cryoablation: In vivo assessment of focal canine prostate cryolesions. J Magn Reson Imaging. 2009;30(1):169–76.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Van den Bosch MAAJ, Josan S, Bouley DM, Chen J, Gill H, Rieke V, et al. MR imaging-guided percutaneous cryoablation of the prostate in an animal model: in vivo imaging of cryoablation-induced tissue necrosis with immediate histopathologic correlation. J Vasc Interv Radiol. 2009;20(2):252–8.

    Article  PubMed  Google Scholar 

  25. Woodrum DA, Kawashima A, Karnes RJ, Davis BJ, Frank I, Engen DE, et al. Magnetic resonance imaging-guided cryoablation of recurrent prostate cancer after radical prostatectomy: initial single institution experience. Urology. 2013;82(4):870–5.

    Article  PubMed  Google Scholar 

  26. Babaian RJ, Donnelly B, Bahn D, Baust JG, Dineen M, Ellis D, et al. Best practice statement on cryosurgery for the treatment of localized prostate cancer. J Urol. 2008;180:1993–2004.

    Google Scholar 

  27. Lynn JG, Zwemer RL, Chick AJ. The biological application of focused ultrasonic waves. Science. 1942;96(2483):119–20.

    Article  CAS  PubMed  Google Scholar 

  28. Bradley WG. MR-guided focused ultrasound: a potentially disruptive technology. J Am Coll Radiol. 2009;6(7):510–3.

    Article  PubMed  Google Scholar 

  29. Hynynen K, Damianou C, Darkazanli A, Unger E, Schenck JF. The feasibility of using MRI to monitor and guide noninvasive ultrasound surgery. Ultrasound Med Biol. 1993;19(1):91–2.

    Article  CAS  PubMed  Google Scholar 

  30. Cline HE, Hynynen K, Watkins RD, Adams WJ, Schenck JF, Ettinger RH, et al. Focused US system for MR imaging-guided tumor ablation. Radiology. 1995;194(3):731–7.

    Article  CAS  PubMed  Google Scholar 

  31. Napoli A, Anzidei M, De Nunzio C, Cartocci G, Panebianco V, De Dominicis C, et al. Real-time magnetic resonance-guided high-intensity focused ultrasound focal therapy for localised prostate cancer: preliminary experience. Eur Urol. 2013;63(2):395–8.

    Article  PubMed  Google Scholar 

  32. Dickinson L, Ahmed HU, Kirkham AP, Allen C, Freeman A, Barber J, et al. A multi-centre prospective development study evaluating focal therapy using high intensity focused ultrasound for localised prostate cancer: the INDEX study. Contemp Clin Trials. 2013;36(1):68–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Dickinson L, Hu Y, Ahmed HU, Allen C, Kirkham AP, Emberton M, et al. Image-directed, tissue-preserving focal therapy of prostate cancer: a feasibility study of a novel deformable magnetic resonance-ultrasound (MR-US) registration system. BJU Int. 2013;112(5):594–601.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Partanen A, Yerram NK, Trivedi H, Dreher MR, Oila J, Hoang AN, et al. Magnetic resonance imaging (MRI)-guided transurethral ultrasound therapy of the prostate: a preclinical study with radiological and pathological correlation using customised MRI-based moulds. BJU Int. 2013;112(4):508–16.

    Article  PubMed  Google Scholar 

  35. Funaki K, Fukunishi H, Sawada K. Clinical outcomes of magnetic resonance-guided focused ultrasound surgery for uterine myomas: 24-month follow-up. Ultrasound Obstet Gynecol. 2009;34(5):584–9.

    Article  CAS  PubMed  Google Scholar 

  36. Furusawa H, Namba K, Thomsen S, Akiyama F, Bendet A, Tanaka C, et al. Magnetic resonance-guided focused ultrasound surgery of breast cancer: reliability and effectiveness. J Am Coll Surg. 2006;203(1):54–63.

    Article  PubMed  Google Scholar 

  37. Liberman B, Gianfelice D, Inbar Y, Beck A, Rabin T, Shabshin N, et al. Pain palliation in patients with bone metastases using MR-guided focused ultrasound surgery: a multicenter study. Ann Surg Oncol. 2009;16(1):140–6.

    Article  PubMed  Google Scholar 

  38. Kopelman D, Inbar Y, Hanannel A, Dank G, Freundlich D, Perel A, et al. Magnetic resonance-guided focused ultrasound surgery (MRgFUS). Four ablation treatments of a single canine hepatocellular adenoma. HPB (Oxford). 2006;8(4):292–8.

    Article  Google Scholar 

  39. Jolesz FA. MRI-guided focused ultrasound surgery. Annu Rev Med. 2009;60:417–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Siddiqui K, Chopra R, Vedula S, Sugar L, Haider M, Boyes A, et al. MRI-guided transurethral ultrasound therapy of the prostate gland using real-time thermal mapping: initial studies. Urology. 2010;76(6):1506–11.

    Article  PubMed  Google Scholar 

  41. Chopra R, Burtnyk M, N’djin WA, Bronskill M. MRI-controlled transurethral ultrasound therapy for localised prostate cancer. Int J Hyperthermia. 2010;26(8):804–21.

    Article  PubMed  Google Scholar 

  42. Chopra R, Colquhoun A, Burtnyk M, N’djin WA, Kobelevskiy I, Boyes A, et al. MR imaging-controlled transurethral ultrasound therapy for conformal treatment of prostate tissue: initial feasibility in humans. Radiology. 2012;265(1):303–13.

    Article  PubMed  Google Scholar 

  43. Rouvière O, Souchon R, Salomir R, Gelet A, Chapelon J-Y, Lyonnet D. Transrectal high-intensity focused ultrasound ablation of prostate cancer: effective treatment requiring accurate imaging. Eur J Radiol. 2007;63(3):317–27.

    Article  PubMed  Google Scholar 

  44. Uchida T, Shoji S, Nakano M, Hongo S, Nitta M, Murota A, et al. Transrectal high-intensity focused ultrasound for the treatment of localized prostate cancer: eight-year experience. Int J Urol. 2009;16(11):881–6.

    Article  PubMed  Google Scholar 

  45. Deckers R, Rome C, Moonen CTW. The role of ultrasound and magnetic resonance in local drug delivery. J Magn Reson Imaging. 2008;27(2):400–9.

    Article  PubMed  Google Scholar 

  46. Rahmathulla G, Recinos PF, Kamian K, Mohammadi AM, Ahluwalia MS, Barnett GH. MRI-guided laser interstitial thermal therapy in neuro-oncology: a review of its current clinical applications. Oncology. 2014;87(2):67–82.

    Article  PubMed  Google Scholar 

  47. Sander S, Beisland HO. Laser in the treatment of localized prostatic carcinoma. J Urol. 1984;132(2):280–1.

    CAS  PubMed  Google Scholar 

  48. Sander S, Beisland HO, Fossberg E. Neodymion YAG laser in the treatment of prostatic cancer. Urol Res. 1982;10(2):85–6.

    Article  CAS  PubMed  Google Scholar 

  49. Raz O, Haider MA, Davidson SRH, Lindner U, Hlasny E, Weersink R, et al. Real-time magnetic resonance imaging-guided focal laser therapy in patients with low-risk prostate cancer. Eur Urol. 2010;58(1):173–7.

    Article  PubMed  Google Scholar 

  50. Woodrum DA, Gorny KR, Mynderse LA, Amrami KK, Felmlee JP, Bjarnason H, et al. Feasibility of 3.0T magnetic resonance imaging-guided laser ablation of a cadaveric prostate. Urology. 2010;75(6):1514.e1–6.

    Google Scholar 

  51. Stafford RJ, Shetty A, Elliott AM, Klumpp SA, McNichols RJ, Gowda A, et al. Magnetic resonance guided, focal laser induced interstitial thermal therapy in a canine prostate model. J Urol. 2010;184(4):1514–20.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Peters RD, Chan E, Trachtenberg J, Jothy S, Kapusta L, Kucharczyk W, et al. Magnetic resonance thermometry for predicting thermal damage: an application of interstitial laser coagulation in an in vivo canine prostate model. Magn Reson Med. 2000;44(6):873–83.

    Article  CAS  PubMed  Google Scholar 

  53. Hoang AN, Volkin D, Yerram NK, Vourganti S, Nix J, Linehan WM, et al. Image guidance in the focal treatment of prostate cancer. Curr Opin Urol. 2012;22(4):328–35.

    Article  PubMed  Google Scholar 

  54. Oto A, Sethi I, Karczmar G, McNichols R, Ivancevic MK, Stadler WM, et al. MR imaging-guided focal laser ablation for prostate cancer: phase I trial. Radiology. 2013;267(3):932–40.

    Article  PubMed  Google Scholar 

  55. Cepek J, Chronik BA, Lindner U, Trachtenberg J, Davidson SRH, Bax J, et al. A system for MRI-guided transperineal delivery of needles to the prostate for focal therapy. Med Phys. 2013;40(1):012304.

    Article  PubMed  Google Scholar 

  56. Colin P, Nevoux P, Marqa M, Auger F, Leroy X, Villers A, et al. Focal laser interstitial thermotherapy (LITT) at 980 nm for prostate cancer: treatment feasibility in Dunning R3327-AT2 rat prostate tumour. BJU Int. 2012;109(3):452–8.

    Article  PubMed  Google Scholar 

  57. Lindner U, Lawrentschuk N, Weersink RA, Davidson SRH, Raz O, Hlasny E, et al. Focal laser ablation for prostate cancer followed by radical prostatectomy: validation of focal therapy and imaging accuracy. Eur Urol. 2010;57(6):1111–4.

    Article  PubMed  Google Scholar 

  58. Viswanath S, Toth R, Rusu M, Sperling D, Lepor H, Futterer J, et al. Identifying quantitative in vivo multi-parametric MRI features for treatment related changes after laser interstitial thermal therapy of prostate cancer. Neurocomputing. 2014;144:13–23.

    Article  PubMed  Google Scholar 

  59. Wenger H, Yousuf A, Oto A, Eggener S. Laser ablation as focal therapy for prostate cancer. Curr Opin Urol. 2014;24(3):236–40.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Lee T, Mendhiratta N, Sperling D, Lepor H. Focal laser ablation for localized prostate cancer: principles, clinical trials, and our initial experience. Rev Urol. 2014;16(2):55–66.

    PubMed Central  PubMed  Google Scholar 

  61. Bozzini G, Colin P, Nevoux P, Villers A, Mordon S, Betrouni N. Focal therapy of prostate cancer: energies and procedures. Urol Oncol. 2013;31(2):155–67.

    Article  CAS  PubMed  Google Scholar 

  62. Betrouni N, Lopes R, Puech P, Colin P, Mordon S. A model to estimate the outcome of prostate cancer photodynamic therapy with TOOKAD soluble WST11. Phys Med Biol. 2011;56(15):4771–83.

    Article  PubMed  Google Scholar 

  63. Da Rosa MR, Trachtenberg J, Chopra R, Haider MA. Early experience in MRI-guided therapies of prostate cancer: HIFU, laser and photodynamic treatment. Cancer Imaging. 2011;11 Spec No:S3–8.

    Google Scholar 

  64. Chen JC, Moriarty JA, Derbyshire JA, Peters RD, Trachtenberg J, Bell SD, et al. Prostate cancer: MR imaging and thermometry during microwave thermal ablation-initial experience. Radiology. 2000;214(1):290–7.

    Article  CAS  PubMed  Google Scholar 

  65. Terraz S, Cernicanu A, Lepetit-Coiffé M, Viallon M, Salomir R, Mentha G, et al. Radiofrequency ablation of small liver malignancies under magnetic resonance guidance: progress in targeting and preliminary observations with temperature monitoring. Eur Radiol. 2010;20(4):886–97.

    Article  PubMed  Google Scholar 

  66. Onik G, Vaughan D, Lotenfoe R, Dineen M, Brady J. The “male lumpectomy”: focal therapy for prostate cancer using cryoablation results in 48 patients with at least 2-year follow-up. Urol Oncol. 2008;26(5):500–5.

    Article  PubMed  Google Scholar 

Download references

Disclosures

This work was supported by the Intramural Research Program of the National Institutes of Health (NIH), National Cancer Institute, Center for Cancer Research, and the Center for Interventional Oncology. NIH and Philips Healthcare have a cooperative research and development agreement. NIH and Philips share intellectual property in the field.

This work was also made possible through the National Institutes of Health Medical Research Scholars Program, a public–private partnership supported jointly by the NIH and generous contributions to the Foundation for the NIH from Pfizer Inc., The Doris Duke Charitable Foundation, The Alexandria Real Estate Equities, Inc. and Mr. and Mrs. Joel S. Marcus, and the Howard Hughes Medical Institute, as well as other private donors. For a complete list, please visit the Foundation website at: http://fnih.org/work/education-training-0/medical-research-scholars-program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Pinto M.D. .

Editor information

Editors and Affiliations

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

An example of real-time thermal monitoring of treatment effect during MRI-guided laser interstitial thermal therapy (MOV 14,581 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fascelli, M., Kilchevsky, A., George, A.K., Pinto, P.A. (2016). Multiparametric MRI (mpMRI): Guided Focal Therapy. In: Stone, N., Crawford, E. (eds) The Prostate Cancer Dilemma. Springer, Cham. https://doi.org/10.1007/978-3-319-21485-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21485-6_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21484-9

  • Online ISBN: 978-3-319-21485-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics