Skip to main content

Comparing Computer Models Solving Number Series Problems

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9205))

Abstract

Inductive reasoning requires to find for given instances a general rule. This makes inductive reasoning an excellent test-bed for artificial general intelligence (AGI). An example being part of many IQ-tests are number series: for a given sequence of numbers the task is to find a next “correct” successor number. Successful reasoning may require to identify regular patterns and to form a rule, an implicit underlying function that generates this number series. Number series problems can be designed along different dimensions, such as structural complexity, required mathematical background knowledge, and even insights based on a perspective switch. The aim of this paper is to give an overview of existing cognitive and computational models, their underlying algorithmic approaches and problem classes. A first empirical comparison of some of these approaches with focus on artificial neural nets and inductive programming is presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amthauer, R., Brocke, B., Liepmann, D., Beauducel, A.: Intelligenz-Struktur-Test 2000 (I-S-T 2000). Hogrefe, Goettingen (1999)

    Google Scholar 

  2. Besold, T., Hernández-Orallo, J., Schmid, U.: Can machine intelligence be measured in the same way as human intelligence? KI - Künstliche Intelligenz (2015)

    Google Scholar 

  3. Bringsjord, S.: Psychometric artificial intelligence. Journal of Experimental & Theoretical Artificial Intelligence 23(3), 271–277 (2011)

    Article  Google Scholar 

  4. Burghardt, J.: E-generalization using grammars. Artificial Intelligence 165, 1–35 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Colton, S., Bundy, A., Walsh, T.: Automatic invention of integer sequences. In: AAAI/IAAI, pp. 558–563 (2000)

    Google Scholar 

  6. Hernández-Orallo, J., Dowe, D.L., Hernández-Lloreda, M.V.: Universal psychometrics: Measuring cognitive abilities in the machine kingdom. Cognitive Systems Research 27, 50–74 (2014)

    Article  MATH  Google Scholar 

  7. Hofmann, J.: Automatische Induktion über Zahlenreihen - Eine Fallstudie zur Analyse des induktiven Programmiersystems IGOR2 (Automated induction of number series - A case study analysing the inductive programming system IGOR2). Master’s thesis, University of Bamberg (December 2012)

    Google Scholar 

  8. Hofmann, J., Kitzelmann, E., Schmid, U.: Applying inductive program synthesis to induction of number series a case study with IGOR2. In: Lutz, C., Thielscher, M. (eds.) KI 2014. LNCS, vol. 8736, pp. 25–36. Springer, Heidelberg (2014)

    Google Scholar 

  9. Hofmann, M., Kitzelmann, E., Schmid, U.: A unifying framework for analysis and evaluation of inductive programming systems. In: Goerzel, B., Hitzler, P., Hutter, M. (eds.) Proceedings of the Second Conference on Artificial General Intelligence (AGI-09, Arlington, Virginia, March 6–9 2009), pp. 55–60. Atlantis Press, Amsterdam (2009)

    Google Scholar 

  10. Hofstadter, D.: Fluid Concepts and Creative Analogies. Basic Books, New York (1995)

    Google Scholar 

  11. Holland, J., Holyoak, K., Nisbett, R., Thagard, P.: Induction - Processes of Inference, Learning, and Discovery. MIT Press, Cambridge (1986)

    Google Scholar 

  12. Holzman, T.G., Pellegrino, J.W., Glaser, R.: Cognitive variables in series completion. Journal of Educational Psychology 75(4), 603–618 (1983)

    Article  Google Scholar 

  13. Mahabal, A.A.: Seqsee: A concept-centred architecture for sequence perception. Ph.D. thesis, Indiana University Bloomington (2009)

    Google Scholar 

  14. Meredith, M.J.E.: Seek-whence: a model of pattern perception. Tech. rep., Indiana Univ., Bloomington (USA) (1986)

    Google Scholar 

  15. Milovec, M.: Applying Inductive Programming to Solving Number Series Problems - Comparing Performance of IGOR with Humans. Master’s thesis, University of Bamberg (September 2014)

    Google Scholar 

  16. Ragni, M., Klein, A.: Predicting numbers: an AI approach to solving number series. In: Bach, J., Edelkamp, S. (eds.) KI 2011. LNCS, vol. 7006, pp. 255–259. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Ragni, M., Klein, A.: Solving number series - architectural properties of successful artificial neural networks. In: Madani, K., Kacprzyk, J., Filipe, J. (eds.) NCTA 2011 - Proceedings of the International Conference on Neural Computation Theory and Applications, pp. 224–229. SciTePress (2011)

    Google Scholar 

  18. Raven, J., et al.: Raven progressive matrices. In: Handbook of nonverbal assessment, pp. 223–237. Springer (2003)

    Google Scholar 

  19. Sanghi, P., Dowe, D.L.: A computer program capable of passing I.Q. tests. In: Slezak, P.P. (ed.) Proc. Joint 4th Int. Conf. on Cognitive Science, & 7th Conf. of the Australasian Society for Cognitive Science (ICCS/ASCS-2003), pp. 570–575. Sydney, NSW, Australia (2003)

    Google Scholar 

  20. Schmid, U., Kitzelmann, E.: Inductive rule learning on the knowledge level. Cognitive Systems Research 12(3), 237–248 (2011)

    Article  Google Scholar 

  21. Siebers, M., Schmid, U.: Semi-analytic natural number series induction. In: Glimm, B., Krüger, A. (eds.) KI 2012. LNCS, vol. 7526, pp. 249–252. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  22. Sternberg, R.J. (ed.): Handbook of Intelligence. Cambridge University Press (2000)

    Google Scholar 

  23. Strannegård, C., Nizamani, A.R., Sjöberg, A., Engström, F.: Bounded Kolmogorov complexity based on cognitive models. In: Kühnberger, K.-U., Rudolph, S., Wang, P. (eds.) AGI 2013. LNCS, vol. 7999, pp. 130–139. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  24. Strannegård, C., Amirghasemi, M., Ulfsbäcker, S.: An anthropomorphic method for number sequence problems. Cognitive Systems Research 22–23, 27–34 (2013)

    Article  Google Scholar 

  25. Wilhelm, O., Conrad, W.: Entwicklung und Erprobung von Tests zur Erfassung des logischen Denkens. Diagnostica 44, 71–83 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ute Schmid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Schmid, U., Ragni, M. (2015). Comparing Computer Models Solving Number Series Problems. In: Bieger, J., Goertzel, B., Potapov, A. (eds) Artificial General Intelligence. AGI 2015. Lecture Notes in Computer Science(), vol 9205. Springer, Cham. https://doi.org/10.1007/978-3-319-21365-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21365-1_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21364-4

  • Online ISBN: 978-3-319-21365-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics