Skip to main content

An Immune Effector System in the Protochordate Gut Sheds Light on Fundamental Aspects of Vertebrate Immunity

  • Chapter
Pathogen-Host Interactions: Antigenic Variation v. Somatic Adaptations

Abstract

A variety of germline and somatic immune mechanisms have evolved in vertebrate and invertebrate species to detect a wide array of pathogenic invaders. The gut is a particularly significant site in terms of distinguishing pathogens from potentially beneficial microbes. Ciona intestinalis, a filter-feeding marine protochordate that is ancestral to the vertebrate form, possesses variable region-containing chitin-binding proteins (VCBPs), a family of innate immune receptors, which recognize bacteria through an immunoglobulin-type variable region. The manner in which VCBPs mediate immune recognition appears to be related to the development and bacterial colonization of the gut, and it is likely that these molecules are critical elements in achieving overall immune and physiological homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atuma C, Strugala V, Allen A, Holm L (2001) The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am J Physiol Gastrointest Liver Physiol 280:G922–G929

    CAS  PubMed  Google Scholar 

  • Azumi K, De Santis R, De Tomaso A, Rigoutsos I, Yoshizaki F, Pinto MR, Marino R, Shida K, Ikeda M, Ikeda M, Arai M, Inoue Y, Shimizu T, Satoh N, Rokhsar DS, Pasquier D, Kasahara L, Satake M, Nonaka M (2003) Genomic analysis of immunity in a Urochordate and the emergence of the vertebrate immune system: “waiting for Godot”. Immunogenetics 55:570–581

    Article  CAS  PubMed  Google Scholar 

  • Bainard JD, Gregory TR (2013) Genome size evolution: patterns, mechanisms, and methodological advances. Genome 56:Vii–Viii

    Article  CAS  PubMed  Google Scholar 

  • Berrill NJ (1947) The development and growth of Ciona. J Mar Biol Assoc UK 26:616–625

    Google Scholar 

  • Boehm T (2007) Two in one: dual function of an invertebrate antigen receptor. Nat Immunol 8:1031–1033

    Article  CAS  PubMed  Google Scholar 

  • Bollinger RR, Everett ML, Palestrant D, Love SD, Lin SS, Parker W (2003) Human secretory immunoglobulin A may contribute to biofilm formation in the gut. Immunology 109:580–587

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burighel P, Cloney RA (1997) Urochordata: Ascidiacea. In: Harrison FW, Ruppert EE (eds) Microscopic analysis of invertebrates. Wiley-Liss, New York, pp 221–347

    Google Scholar 

  • Cannon JP, Haire RN, Litman GW (2002) Identification of diversified genes that contain immunoglobulin-like variable regions in a protochordate. Nat Immunol 3:1200–1207

    Article  CAS  PubMed  Google Scholar 

  • Cannon JP, Haire RN, Schnitker N, Mueller MG, Litman GW (2004) Individual protochordates have unique immune-type receptor repertoires. Curr Biol 14:R465–R466

    Article  CAS  PubMed  Google Scholar 

  • Craig SW, Cebra JJ (1971) Peyer’s patches – enriched source of precursors for iga-producing immunocytes in rabbit. J Exp Med 134:188–200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439:965–968

    Article  CAS  PubMed  Google Scholar 

  • Dishaw LJ, Mueller MG, Gwatney N, Cannon JP, Haire RN, Litman RT, Amemiya CT, Ota T, Rowen L, Glusman G, Litman GW (2008) Genomic complexity of the variable region-containing chitin-binding proteins in amphioxus. BMC Genet 9:78

    Article  PubMed Central  PubMed  Google Scholar 

  • Dishaw LJ, Ota T, Mueller MG, Cannon JP, Haire RN, Gwatney NR, Litman RT, Litman GW (2010) The basis for haplotype complexity in VCBPs, an immune-type receptor in amphioxus. Immunogenetics 62:623–631

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dishaw LJ, Giacomelli S, Melillo D, Zucchetti I, Haire RN, Natale L, Russo NA, De Santis R, Litman GW, Pinto MR (2011) A role for variable region-containing chitin-binding proteins (VCBPs) in host gut-bacteria interactions. Proc Natl Acad Sci USA 108:16747–16752

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dishaw LJ, Flores-Torres JA, Mueller MG, Karrer CR, Skapura DP, Melillo D, Zucchetti I, De Santis R, Pinto MR, Litman GW (2012) A basal chordate model for studies of gut microbial immune interactions. Front Immunol 3:96

    Article  PubMed Central  PubMed  Google Scholar 

  • Dishaw LJ, Cannon JP, Litman GW, Parker W (2014a) Immune-directed support of rich microbial communities in the gut has ancient roots. Dev Comp Immunol 47:36–51

    Article  PubMed Central  PubMed  Google Scholar 

  • Dishaw LJ, Flores-Torres J, Lax S, Gemayel K, Leigh B, Melillo D, Mueller MG, Natale L, Zucchetti I, De Santis R, Pinto MR, Litman GW, Gilbert JA (2014b) The gut of geographically disparate Ciona intestinalis harbors a core microbiota. PLoS One 9, e93386

    Google Scholar 

  • Fagarasan S, Kawamoto S, Kanagawa O, Suzuki K (2010) Adaptive immune regulation in the gut: T cell-dependent and T cell-independent IgA synthesis. Annu Rev Immunol 28:243–273

    Article  CAS  PubMed  Google Scholar 

  • Ghosh J, Lun CM, Majeske AJ, Sacchi S, Schrankel CS, Smith LC (2011) Invertebrate immune diversity. Dev Comp Immunol 35:959–974

    Article  CAS  PubMed  Google Scholar 

  • Gough NM, Bernard O (1981) Sequences of the joining region genes for immunoglobulin heavy chains and their role in generation of antibody diversity. Proc Natl Acad Sci USA 78:509–513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hernandez Prada JA, Haire RN, Allaire M, Jakoncic J, Stojanoff V, Cannon JP, Litman GW, Ostrov DA (2006) Ancient evolutionary origin of diversified variable regions demonstrated by crystal structures of an immune-type receptor in amphioxus. Nat Immunol 7:875–882

    Article  PubMed Central  PubMed  Google Scholar 

  • Hirano T, Nishida H (2000) Developmental fates of larval tissues after metamorphosis in ascidian Halocynthia roretziI. II. Origin of endodermal tissues of the juvenile. Dev Genes Evol 210:55–63

    Article  CAS  PubMed  Google Scholar 

  • Holland LZ, Albalat R, Azumi K, Benito-Gutierrez E, Blow MJ, Bronner-Fraser M, Brunet F, Butts T, Candiani S, Dishaw LJ, Ferrier DE, Garcia-Fernandez J, Gibson-Brown JJ, Gissi C, Godzik A, Hallbook F, Hirose D, Hosomichi K, Ikuta T, Inoko H, Kasahara M, Kasamatsu J, Kawashima T, Kimura A, Kobayashi M, Kozmik Z, Kubokawa K, Laudet V, Litman GW, McHardy AC, Meulemans D, Nonaka M, Olinski RP, Pancer Z, Pennacchio LA, Pestarino M, Rast JP, Rigoutsos I, Robinson-Rechavi M, Roch G, Saiga H, Sasakura Y, Satake M, Satou Y, Schubert M, Sherwood N, Shiina T, Takatori N, Tello J, Vopalensky P, Wada S, Xu A, Ye Y, Yoshida K, Yoshizaki F, Yu JK, Zhang Q, Zmasek CM, de Jong PJ, Osoegawa K, Putnam NH, Rokhsar DS, Satoh N, Holland PW (2008) The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Res 18:1100–1111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292:1115–1118

    Article  CAS  PubMed  Google Scholar 

  • Hooper LV, Macpherson AJ (2010) Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol 10:159–169

    Article  CAS  PubMed  Google Scholar 

  • Jeuniaux C, Vossfoucart MF (1991) Chitin biomass and production in the marine-environment. Biochem Syst Ecol 19:347–356

    Article  CAS  Google Scholar 

  • Johansson MEV, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC (2008) The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci USA 105:15064–15069

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lang TA, Hansson GC, Samuelsson T (2007) Gel-forming mucins appeared early in metazoan evolution. Proc Natl Acad Sci USA 104:16209–16214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee CG (2009) Chitin, chitinases and chitinase-like proteins in allergic inflammation and tissue remodeling. Yonsei Med J 50:22–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee YK, Mazmanian SK (2010) Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 330:1768–1773

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liberti A, Melillo D, Zucchetti I, Natale L, Dishaw LJ, Litman GW, De Santis R, Pinto MR (2014) Expression of Ciona intestinalis variable region-containing chitin-binding proteins during development of the gastrointestinal tract and their role in host-microbe interactions. PLoS One 9, e94984

    Google Scholar 

  • Macpherson AJ, Mccoy KD, Johansen FE, Brandtzaeg P (2008) The immune geography of IgA induction and function. Mucosal Immunol 1:11–22

    Article  CAS  PubMed  Google Scholar 

  • McFall-Ngai M (2007) Adaptive immunity: care for the community. Nature 445:153

    Article  CAS  PubMed  Google Scholar 

  • Mostov KE, de Bruyn KA, Deitcher DL (1986) Deletion of the cytoplasmic tail of the polymeric immunoglobulin receptor prevents basolateral localization and endocytosis. Cell 47:359–364

    Article  CAS  PubMed  Google Scholar 

  • Satoh N (2003) The ascidian tadpole larva: comparative molecular development and genomics. Nat Rev Genet 4:285–295

    Article  CAS  PubMed  Google Scholar 

  • Steward GF, Montiel JL, Azam F (2000) Genome size distributions indicate variability and similarities among marine viral assemblages from diverse environments. Limnol Oceanogr 45:1697–1706

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank both the ASSEMBLE (Association of European Marine Biological Laboratories) program for collaborative support and Barbara Pryor for editorial assistance. LJD is supported by grants from the All Children’s Hospital Foundation and the University of South Florida College of Medicine Sponsored Research; GWL is supported by NIH R01 Al 23338.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary W. Litman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liberti, A. et al. (2015). An Immune Effector System in the Protochordate Gut Sheds Light on Fundamental Aspects of Vertebrate Immunity. In: Hsu, E., Du Pasquier, L. (eds) Pathogen-Host Interactions: Antigenic Variation v. Somatic Adaptations. Results and Problems in Cell Differentiation, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-319-20819-0_7

Download citation

Publish with us

Policies and ethics