Skip to main content

Learning Structure in Evidential Networks from Evidential DataBases

  • Conference paper
  • First Online:
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9161))

  • 783 Accesses

Abstract

Evidential networks have gained a growing interest as a good tool fusing belief function theory and graph theory to analyze complex systems with uncertain data. The graphical structure of these models is not always clear, it can be fixed by experts or constructed from existing data. The main issue of this paper is how to extract the graphical structure of an evidential network from imperfect data stored in evidential databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bach Tobji, M.A., Ben Yaghlane, B., Mellouli, K.: A new algorithm for mining frequent itemsets from evidential databases. In: Proceedings of Information Processing and Management of Uncertainty (IPMU 2008), pp. 1535–1542, Malaga (2008)

    Google Scholar 

  2. Ben Hariz, N., Ben Yaghlane, B.: Learning parameters in directed evidential networks with conditional belief functions. In: Cuzzolin, F. (ed.) BELIEF 2014. LNCS, vol. 8764, pp. 294–303. Springer, Heidelberg (2014)

    Google Scholar 

  3. Ben Yaghlane, B.: Uncertainty Representation and Reasoning in Directed Evidential Networks. P.hD. thesis, Institut Supérieur de Gestion de Tunis (2002)

    Google Scholar 

  4. Ben Yaghlane, B., Mellouli, K.: Inference in directed evidential networks based on the transferable belief model. IJAR 48(2), 399–418 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Chickering, D.: Optimal structure identification with greedy search. J. Mach. Learn. Res. 3, 507–554 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. Ser. B 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  7. Denœux, T.: Maximum likelihood estimation from uncertain data in the belief function framework. Knowl. Data Eng. 25, 113–119 (2013)

    Google Scholar 

  8. Hewawasam, K., Premaratne, K., Subasingha, S., Shyu, M.-L.: Rule mining and classifcation in imperfect databases. In: Proceedings of the 8th International Conference on Information Fusion, vol. 1, pp. 661–668, Philadelphia (2005)

    Google Scholar 

  9. Jordan, M.: Learning in Graphical Models. Kluwer Academic Publisher, New York (1998)

    Book  Google Scholar 

  10. Krause, P.J.: Learning probabilistic networks. Knowl. Eng. Rev. 13(4), 321–351 (1998)

    Article  Google Scholar 

  11. Lauritzen, S.L., Spiegelhalter, D.J.: Local computation with probabilities and graphical structures and their application to expert systems. J. Roy. Stat. Soc. B 50, 157–224 (1988)

    MathSciNet  MATH  Google Scholar 

  12. Naim, P., Wuillemin, P.H., Leray, P., Pourret, O., Becker, A.: Réseaux Bayésiens. Eyrolles, Paris (2004)

    Google Scholar 

  13. Neapolitan, R.: Learning Bayesian Networks. Prenctice Hall, New York (2003)

    Google Scholar 

  14. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, New York (1988)

    MATH  Google Scholar 

  15. Pearl, J., Verma, T.: A theory of inferred causation. In: Allen, J., Fikes, R., Sandewall, E. (eds.) Proceedings of the Second International Conference on Knowledge Representation and Reasoning, pp. 441–452. Morgan Kaufmann, New York (1991)

    Google Scholar 

  16. Petitrenaud, S.: Independence tests for uncertain data with a frequentist method. In: Proceedings of the 5th International Conference on Soft Methods in Probability and Statistic (SMPS 2010), pp. 519–526 (2010)

    Google Scholar 

  17. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  18. Smets, P.: Jeffrey’s rule of conditioning generalized to belief functions. In: Proceedings of the Ninth international conference on Uncertainty in artificial intelligence (UAI 1993), pp. 500–505, Washington (1993)

    Google Scholar 

  19. Smets, P., Kennes, R.: The transferable belief model. Artif. Intell. 66, 191–234 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search. Springer-Verlag, New York (2000)

    MATH  Google Scholar 

  21. Tang, Y., Zheng, J.: Dempster conditioning and conditional independence in evidence theory. In: Australian Conference on Artificial Intelligence, vol. 3809, pp. 822–825, Sydney (2005)

    Google Scholar 

  22. Verma, T., Pearl, J.: Equivalence and synthesis of causal models. In: Proceedings of Sixth Conference on Uncertainty in Artifcial Intelligence, pp. 220–227 (1990)

    Google Scholar 

  23. Xu, H., Smets, Ph.: Evidential reasoning with conditional belief functions. In: Heckerman, D., et al. (eds.) Proceedings of Uncertainty in Artificial Intelligence (UAI 1994), pp. 598–606, Seattle (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narjes Ben Hariz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hariz, N.B., Yaghlane, B.B. (2015). Learning Structure in Evidential Networks from Evidential DataBases. In: Destercke, S., Denoeux, T. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2015. Lecture Notes in Computer Science(), vol 9161. Springer, Cham. https://doi.org/10.1007/978-3-319-20807-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20807-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20806-0

  • Online ISBN: 978-3-319-20807-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics