Skip to main content

Interacting with Modal Logics in the Coq Proof Assistant

  • Conference paper
  • First Online:
Book cover Computer Science -- Theory and Applications (CSR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9139))

Included in the following conference series:

Abstract

This paper describes an embedding of higher-order modal logics in the Coq proof assistant. Coq’s capabilities are used to implement modal logics in a minimalistic manner, which is nevertheless sufficient for the formalization of significant, non-trivial modal logic proofs. The elegance, flexibility and convenience of this approach, from a user perspective, are illustrated here with the successful formalization of Gödel’s ontological argument.

Christoph Benzmüller—Supported by the German Research Foundation (DFG) under grant BE 2501/9-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Coq proof assistant was chosen because of the authors’ greater familiarity with the tactic language of this system. Nevertheless, the techniques presented here are likely to be useful for other proof assistants (e.g. Isabelle [15], HOL-Light [14]).

  2. 2.

    The keyword indicates a lambda abstraction: denotes the function \(\lambda x:t.p\), which takes an argument x (of type t) and returns p.

  3. 3.

    The underlying proof system of Coq (the Calculus of Inductive Constructions (CIC) [18]) is actually more sophisticated and minimalistic than the calculus shown in Fig. 1. But the calculus shown here suffices for the purposes of this paper. This calculus is classical, because of the double negation elimination rule. Although CIC is intuitionistic, it can be made classical by importing Coq ’s classical library, which adds the axiom of the excluded middle and the double negation elimination lemma.

  4. 4.

    The ND calculus with the rules from Figs. 1 and 2 is sound and complete relatively to the calculus of Fig.  1 extended with a necessitation rule and the modal axiom K [22]. Starting from a sound and Henkin-complete ND calculus for classical higher-order logic (cf. Fig. 1), the additional modal rules in Fig. 2 make it sound and Henkin-complete for the rigid higher-order modal logic K.

  5. 5.

    The proofs found automatically by the above provers indeed differ from the one presented here: e.g., the strong S5 principle used below (and by Scott) is not needed; the ATP proofs only rely on axiom B.

References

  1. Benzmüller, C., Paleo, B.W.: Formalization, mechanization and automation of Gödel’s proof of god’s existence. CoRR, abs/1308.4526 (2013)

    Google Scholar 

  2. Benzmüller, C., Paleo, B.W.: Gödel’s God inIsabelle/HOL. Archive of Formal Proofs, 2013 (2013)

    Google Scholar 

  3. Benzmüller, C., Paulson, L.C.: Exploring properties of normal multimodal logics in simple type theory with LEO-II. In: Festschrift in Honor of Peter B. Andrews on His 70th Birthday, pp. 386–406. College Publications (2008)

    Google Scholar 

  4. Benzmüller, C., Paulson, L.C.: Quantified multimodal logics in simple type theory. Logica Universalis (Special Issue on Multimodal Logics) 7(1), 7–20 (2013)

    Article  MATH  Google Scholar 

  5. Benzmüller, C.E., Paulson, L.C., Theiss, F., Fietzke, A.: LEO-II - a cooperative automatic theorem prover for classical higher-order logic (system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 162–170. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Benzmüller, C., Brown, C.E., Kohlhase, M.: Higher-order semantics and extensionality. J. Symb. Log. 69(4), 1027–1088 (2004)

    Article  MATH  Google Scholar 

  7. Benzmüller, C., Otten, J., Raths, T.: Implementing and evaluating provers for first-order modal logics. In: ECAI 2012–20th European Conference on Artificial Intelligence, pp. 163–168 (2012)

    Google Scholar 

  8. Blackburn, P., Benthem, J.v., Wolter, F.: Handbook of Modal Logic. Elsevier, Amsterdam (2006)

    Google Scholar 

  9. Brown, C.E.: Satallax: an automatic higher-order prover. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 111–117. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Corazzon, R.: Contemporary bibliography on the ontological proof. (http://www.ontology.co/biblio/ontological-proof-contemporary-biblio.htm)

  11. Fitting, M.: Types, Tableaux and Gödel’s God. Kluver Academic Press, Dordrecht (2002)

    Google Scholar 

  12. Gabbay, D.M.: Labelled Deductive Systems. Clarendon Press, Oxford (1996)

    MATH  Google Scholar 

  13. Gödel, K.: Ontological proof. In: Gödel, K.: Collected Works, Unpublished Essays and Letters. vol. 3, pp. 403–404. Oxford University Press, Oxford (1970)

    Google Scholar 

  14. Harrison, J.: HOL light: an overview. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 60–66. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Nipkow, T., Paulson, L.C., Wenzel, M. (eds.): Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  16. Oppenheimer, P.E., Zalta, E.N.: A computationally-discovered simplification of the ontological argument. Australas. J. Philos. 2(89), 333–349 (2011)

    Article  Google Scholar 

  17. Paleo, B.W., Benzmüller, C.: Formal theology repository. (http://github.com/FormalTheology/GoedelGod)

  18. Paulin-Mohring, C.: Introduction to the calculus of inductive constructions. In: Delahaye, D., Paleo, B.W. (eds.) All about Proofs, Proofs for All. Mathematical Logic and Foundations. College Publications, London (2015)

    Google Scholar 

  19. Rushby, J.: The ontological argument in PVS. In: Proceedings of CAV Workshop Fun With Formal Methods, St. Petersburg, Russia (2013)

    Google Scholar 

  20. Schmidt, R.: List of modal provers. (http://www.cs.man.ac.uk/ schmidt/tools/)

  21. Scott, D.: Appendix B. Notes in Dana Scott’s hand. In: [24] (2004)

    Google Scholar 

  22. Siders, A., Paleo, B.W.: A variant of Gödel’s ontological proof in a natural deduction calculus. (http://github.com/FormalTheology/GoedelGod/blob/master/Papers/InProgress/Natu ralDeduction/GodProof-ND.pdf?raw=true)

  23. Sobel, J.H.: Gödel’s ontological proof. In: On Being and Saying. Essays for Richard Cartwright, pp. 241–261. MIT Press, Cambridge (1987)

    Google Scholar 

  24. Sobel, J.H.: Logic and Theism: Arguments for and Against Beliefs in God. Cambridge University Press, Cambridge (2004)

    Google Scholar 

Download references

Acknowledgements

We thank Cedric Auger and Laurent Théry, for their answers to our questions about Ltac in the Coq-Club mailing-list.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Woltzenlogel Paleo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Benzmüller, C., Woltzenlogel Paleo, B. (2015). Interacting with Modal Logics in the Coq Proof Assistant. In: Beklemishev, L., Musatov, D. (eds) Computer Science -- Theory and Applications. CSR 2015. Lecture Notes in Computer Science(), vol 9139. Springer, Cham. https://doi.org/10.1007/978-3-319-20297-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20297-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20296-9

  • Online ISBN: 978-3-319-20297-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics