Skip to main content

On the Satisfiability of Quantum Circuits of Small Treewidth

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9139))

Abstract

It has been known since long time that many NP-hard optimization problems can be solved in polynomial time when restricted to structures of constant treewidth. In this work we provide the first extension of such results to the quantum setting. We show that given a quantum circuit C with n uninitialized inputs, \( poly (n)\) gates, and treewidth t, one can compute in time \((\frac{n}{\delta })^{\exp (O(t))}\) a classical assignment \(y\in \{0,1\}^n\) that maximizes the acceptance probability of C up to a \(\delta \) additive factor. In particular our algorithm runs in polynomial time if t is constant and \(1/poly(n) < \delta < 1\). For unrestricted values of t this problem is known to be hard for the complexity class QCMA, a quantum generalization of NP. In contrast, we show that the same problem is already NP-hard if \(t=O(\log n)\) even when \(\delta \) is constant. Finally, we show that for \(t=O(\log n)\) and constant \(\delta \), it is QMA-hard to find a quantum witness \(|\varphi \rangle \) that maximizes the acceptance probability of a quantum circuit of treewidth t up to a \(\delta \) additive factor.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In the case of classical circuits, it is assumed that each variable labels a unique input of unbounded fan-out.

References

  1. Aharonov, D., Kitaev, A., Nisan, N.: Quantum circuits with mixed states. In: Proceeding of the 30th Symposium on Theory of Computing, pp. 20–30 (1998)

    Google Scholar 

  2. Aharonov, D., Naveh, T.: Quantum NP - A survey (2002). arXiv preprint quant-ph/0210077

  3. Alekhnovich, M., Razborov, A.A.: Satisfiability, branch-width and tseitin tautologies. In: Proceeding of the 43rd Symposium on Foundations of Computer Science, pp. 593–603 (2002)

    Google Scholar 

  4. Allender, E., Chen, S., Lou, T., Papakonstantinou, P.A., Tang, B.: Width-parametrized SAT: time-space tradeoffs. Theor. Comput. 10(12), 297–339 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  5. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12(2), 308–340 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial \(k\)-trees. Discrete Appl. Math. 23(1), 11–24 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. Babai, L.: Bounded round interactive proofs in finite groups. SIAM J. Discrete Math. 5(1), 88–111 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bookatz, A.D.: QMA-complete problems. Quantum Inf. Comput. 14(5–6), 361–383 (2014)

    MathSciNet  Google Scholar 

  9. Broering, E., Lokam, S.V.: Width-based algorithms for SAT and CIRCUIT-SAT. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 162–171. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Courcelle, B.: The monadic second-order logic of graphs I. recognizable sets of finite graphs. Inf. comput. 85(1), 12–75 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Georgiou, K., Papakonstantinou, P.A.: Complexity and algorithms for well-structured k-SAT instances. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 105–118. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Gottesman, D.: The Heisenberg representation of quantum computers (1998). arXiv preprint quant-ph/9807006

  13. Jozsa, R., Linden, N.: On the role of entanglement in quantum-computational speed-up. Proc. Roy. Soc. Lond. Ser. A 459(2036), 2011–2032 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kitaev, A., Shen, A., Vyalyi, M.: Classical and Quantum Computation. Graduate Studies in Mathematics, vol. 47. AMS, Boston (2002)

    MATH  Google Scholar 

  15. Markov, I.L., Shi, Y.: Simulating quantum computation by contracting tensor networks. SIAM J. Comput. 38(3), 963–981 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2010)

    Book  MATH  Google Scholar 

  17. Robertson, N., Seymour, P.D.: Graph minors III. Planar tree-width. J. Comb. Theor. Ser. B 36(1), 49–64 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  18. Thilikos, D.M., Serna, M., Bodlaender, H.L.: Constructive linear time algorithms for small cutwidth and carving-width. In: Lee, D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969, pp. 192–203. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  19. Valiant, L.G.: Quantum circuits that can be simulated classically in polynomial time. SIAM J. Comput. 31(4), 1229–1254 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Vidal, G.: Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003)

    Article  Google Scholar 

  21. Watrous, J.: Succinct quantum proofs for properties of finite groups. In: Proceeding of the 41st Symposium on Foundations of Computer Science, pp. 537–546 (2000)

    Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges financial support from the European Research Council, ERC grant agreement 339691, within the context of the project Feasibility, Logic and Randomness (FEALORA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateus de Oliveira Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

de Oliveira Oliveira, M. (2015). On the Satisfiability of Quantum Circuits of Small Treewidth . In: Beklemishev, L., Musatov, D. (eds) Computer Science -- Theory and Applications. CSR 2015. Lecture Notes in Computer Science(), vol 9139. Springer, Cham. https://doi.org/10.1007/978-3-319-20297-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20297-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20296-9

  • Online ISBN: 978-3-319-20297-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics