Skip to main content

Design of the Game-Based Learning Environment “Dudeman & Sidegirl: Operation Clean World,” a Numerical Magnitude Processing Training

  • Chapter
Describing and Studying Domain-Specific Serious Games

Abstract

Numerical magnitude processing has been shown to play a crucial role in the development of mathematical ability and intervention studies have revealed that training children’s numerical magnitude processing has positive effects on their numerical magnitude processing skills and mathematics achievement. However, from these intervention studies, it remains unclear whether numerical magnitude processing interventions should focus on training with a numerical magnitude comparison or a number line estimation task. It also remains to be determined whether there is a different impact of training symbolic versus nonsymbolic numerical magnitude processing skills. In order to answer these two questions, we developed four game-based learning environments, using the storyline of “Dudeman & Sidegirl: Operation clean world”. The first two game-based learning environments comprise either a numerical magnitude comparison or a number line estimation training and the last two game-based learning environments stimulate either the processing of symbolic or nonsymbolic numerical magnitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Learning environment is used in the broad sense of the term in this contribution. The games described in this contribution are just one type of learning environment, namely a training environment.

References

  • Ashcraft, M. H., & Moore, A. M. (2012). Cognitive processes of numerical estimation in children. Journal of Experimental Child Psychology, 111, 246–267. doi:10.1016/j.jecp.2011.08.005.

    Article  Google Scholar 

  • Bailey, D. H., Siegler, R. S., & Geary, D. C. (2014). Early predictors of middle school fraction knowledge. Developmental Science, 17(5), 775–785.

    Article  Google Scholar 

  • Barth, H., & Paladino, A. M. (2011). The development of numerical estimation: Evidence against a representational shift. Developmental Science, 14, 125–135.

    Article  Google Scholar 

  • Berteletti, I., Lucangeli, D., Piazza, M., Dehaene, S., & Zorzi, M. (2010). Numerical estimation in preschoolers. Developmental Psychology, 46, 545–551.

    Article  Google Scholar 

  • Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 41, 189–201.

    Article  Google Scholar 

  • Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79, 1016–1031.

    Article  Google Scholar 

  • Bugden, S., & Ansari, D. (2011). Individual differences in children’s mathematical competence are related to the intentional but not automatic processing of Arabic numerals. Cognition, 118, 32–44. doi:10.1016/j.cognition.2010.09.005.

    Article  Google Scholar 

  • Connolly, T. M., Boyle, E. A., MacArthur, E., Hainey, T., & Boyle, J. M. (2012). A systematic literature review of empirical evidence on computer games and serious games. Computers & Education, 59, 661–686.

    Article  Google Scholar 

  • De Smedt, B., & Gilmore, C. (2011). Defective number module or impaired access? Numerical magnitude processing in first graders with mathematical difficulties. Journal of Experimental Child Psychology, 108, 278–292.

    Article  Google Scholar 

  • De Smedt, B., Noël, M. P., Gilmore, C., & Ansari, D. (2013). The relationship between symbolic and non-symbolic numerical magnitude processing and the typical and atypical development of mathematics. A review of evidence from brain and behaviour. Trends in Neuroscience and Education, 2, 48–55.

    Article  Google Scholar 

  • De Smedt, B., Verschaffel, L., & Ghesquière, P. (2009). The predictive value of numerical magnitude comparison for individual differences in mathematics achievement. Journal of Experimental Child Psychology, 103, 469–479.

    Article  Google Scholar 

  • Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1–42.

    Article  Google Scholar 

  • Dehaene, S. (1997). The number sense: How the mind creates mathematics. London, England: The Penguin Press.

    Google Scholar 

  • Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44, 43–74.

    Article  Google Scholar 

  • Garris, R., Ahlers, R., & Driskell, J. E. (2002). Games, motivation and learning: A research and practice model. Simulation & Gaming, 33, 441–467.

    Article  Google Scholar 

  • Griffin, S. (2004). Building number sense with Number Worlds: A mathematics program for young children. Early Childhood Research Quarterly, 19, 173–180.

    Article  Google Scholar 

  • Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455, 665–668.

    Article  Google Scholar 

  • Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103, 17–29.

    Article  Google Scholar 

  • Jordan, N. C., Glutting, J., Dyson, N., Hassinger-Das, B., & Irwin, C. (2012). Building kindergartners’ number sense: A randomized controlled study. Journal of Educational Psychology, 104, 647–660.

    Article  Google Scholar 

  • Kucian, K., Grond, U., Rotzer, S., Henzi, B., Schönmann, C., Plangger, F., … von Aster, M. (2011). Mental number line training in children with developmental dyscalculia. Neuroimage, 57, 782–795.

    Google Scholar 

  • Landerl, K., & Kölle, C. (2009). Typical and atypical development of basic numerical skills in elementary school. Journal of Experimental Child Psychology, 103, 546–565. doi:10.1016/j.jecp.2008.12.006.

    Article  Google Scholar 

  • Laski, E. V., & Siegler, R. S. (2007). Is 27 a big number? Correlational and causal connections among numerical categorization, number line estimation, and numerical magnitude comparison. Child Development, 78, 1723–1743.

    Article  Google Scholar 

  • Lee, S. S., & Lee, Y. H. K. (1991). Effects of learner-control versus program-control strategies on computer-aided learning of chemistry problems: For acquisition or review? Journal of Educational Psychology, 83(4), 491–498.

    Article  Google Scholar 

  • Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental Science, 14, 1292–1300. doi:10.1111/j.1467-7687.2011.01080.x.

    Article  Google Scholar 

  • Linsen, S., Verschaffel, L., Reynvoet, B., & De Smedt, B. (2014). The association between children’s numerical magnitude processing and mental multi-digit subtraction. Acta Psychologica, 145, 75–83.

    Article  Google Scholar 

  • Lonnemann, J., Linkersdörfer, J., Hasselhorn, M., & Lindberg, S. (2011). Symbolic and non-symbolic distance effects in children and their connection with arithmetic skills. Journal of Neurolinguistics, 24, 583–591. doi:10.1016/j.jneuroling.2011.02.004.

    Article  Google Scholar 

  • Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011). Preschoolers’ precision of the approximate number system predicts later school mathematics performance. PLoS One, 6, 1–8.

    Article  Google Scholar 

  • Moreno, R., & Mayer, E. R. (2002). Verbal redundancy in multimedia learning: When reading helps listening. Journal of Educational Psychology, 94, 156–163.

    Article  Google Scholar 

  • Mundy, E., & Gilmore, C. K. (2009). Children’s mapping between symbolic and nonsymbolic representations of number. Journal of Experimental Child Psychology, 103, 490–502.

    Article  Google Scholar 

  • Mussolin, C., Mejias, S., & Noël, M. P. (2010). Symbolic and nonsymbolic number comparison in children with and without dyscalculia. Cognition, 115, 10–25. doi:10.1016/j.cognition.2009.10.006.

    Article  Google Scholar 

  • Nielsen, J. (1995, January 1). 10 Usability heuristics for user interface design. Retrieved from http://www.nngroup.com/articles/ten-usability-heuristics/

  • Obersteiner, A., Reiss, K., & Ufer, S. (2013). How training on exact or approximate mental representations of number can enhance first-grade students’ basic number processing and arithmetic skills. Learning and Instruction, 23, 125–135.

    Article  Google Scholar 

  • Ramani, G. B., & Siegler, R. S. (2008). Promoting broad and stable improvements in low-income children’s numerical knowledge through playing number board games. Child Development, 79, 375–394.

    Article  Google Scholar 

  • Ramani, G. B., & Siegler, R. S. (2011). Reducing the gap in numerical knowledge between low- and middle-income preschoolers. Journal of Applied Developmental Psychology, 32, 146–159.

    Article  Google Scholar 

  • Ramani, G. B., Siegler, R. S., & Hitti, A. (2012). Taking it to the classroom: Number board games as a small group learning activity. Journal of Educational Psychology, 104, 661–672.

    Article  Google Scholar 

  • Räsänen, P., Salminen, J., Wilson, A. J., Aunio, P., & Dehaene, S. (2009). Computer-assisted intervention for children with low numeracy skills. Cognitive Development, 24, 450–472.

    Article  Google Scholar 

  • Rousselle, L., & Noël, M. P. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs non-symbolic number magnitude processing. Cognition, 102, 361–395. doi:10.1016/j.cognition.2006.01.005.

    Article  Google Scholar 

  • Sasanguie, D., De Smedt, B., Defever, E., & Reynvoet, B. (2012). Association between basic numerical abilities and mathematics achievement. British Journal of Developmental Psychology, 30, 344–357.

    Article  Google Scholar 

  • Sasanguie, D., & Reynvoet, B. (2013). Number comparison and number line estimation rely on different mechanisms. Psychologica Belgica, 53(4), 17–35.

    Article  Google Scholar 

  • Sasanguie, D., Van den Bussche, E., & Reynvoet, B. (2012). Predictors for mathematics achievement? Evidence from a longitudinal study. Mind, Brain and Education, 6, 119–128.

    Article  Google Scholar 

  • Scheiter, K., & Gerjets, P. (2007). Learner control in hypermedia environments. Educational Psychology Review, 19, 285–307.

    Article  Google Scholar 

  • Sekuler, R., & Mierkiewicz, D. (1977). Children’s judgements of numerical inequality. Child Development, 48, 630–633.

    Article  Google Scholar 

  • Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75, 428–444.

    Article  Google Scholar 

  • Siegler, R. S., & Ramani, G. B. (2009). Playing linear number board games—but not circular ones—improves low-income preschoolers’ numerical understanding. Journal of Educational Psychology, 101, 545–560.

    Article  Google Scholar 

  • Soltész, F., Szücs, D., & Szücs, L. (2010). Relationships between magnitude representation, counting and memory in 4- to 7-year-old children: A developmental study. Behavioral and Brain Functions, 6, 1–14.

    Article  Google Scholar 

  • Van Merriënboer, J. J. G., Clark, R. E., & de Croock, M. B. M. (2002). Blueprints for complex learning: The 4C/ID-model. Educational Technology Research and Development, 50(2), 39–64.

    Article  Google Scholar 

  • Vanbinst, K., Ghesquière, P., & De Smedt, B. (2012). Numerical magnitude representations and individual differences in children’s arithmetic strategy use. Mind, Brain and Education, 6, 129–136.

    Article  Google Scholar 

  • Whyte, J. C., & Bull, R. (2008). Number games, magnitude representation, and basic number skills in pre-schoolers. Developmental Psychology, 44, 588–596.

    Article  Google Scholar 

  • Wilson, K. A., Bedwell, W. L., Lazzara, E. H., Salas, E., Burke, C. S., Estock, J. L., … Conkey, C. (2009). Relationships between game attributes and learning outcomes. Review and research proposals. Simulation & Gaming, 40, 217–266. doi:10.1177/1046878108321866

  • Wilson, A. J., Dehaene, S., Dubois, O., & Fayol, M. (2009). Effects of an adaptive game intervention on accessing number sense in low-socioeconomic-status kindergarten children. Mind, Brain, and Education, 3, 224–234.

    Article  Google Scholar 

  • Wilson, A. J., Dehaene, S., Pinel, P., Revkin, S. K., Cohen, L., & Cohen, D. (2006). Principles underlying the design of “The Number Race,” an adaptive computer game for remediation of dyscalculia. Behavioral and Brain Functions, 2(19), 1–14.

    Google Scholar 

  • Wilson, A. J., Revkin, S. K., Cohen, D., Cohen, L., & Dehaene, S. (2006). An open trial assessment of “The Number Race,” an adaptive computer game for remediation of dyscalculia. Behavioral and Brain Functions, 2, 20. doi:10.1186/1744-9081-2-20.

    Article  Google Scholar 

Download references

Acknowledgment

This research was supported by grant GOA 2012/010 of the Research Fund KU Leuven, Belgium. We would like to thank all participating children and teachers.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sarah Linsen or Bieke Maertens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Linsen, S. et al. (2015). Design of the Game-Based Learning Environment “Dudeman & Sidegirl: Operation Clean World,” a Numerical Magnitude Processing Training. In: Torbeyns, J., Lehtinen, E., Elen, J. (eds) Describing and Studying Domain-Specific Serious Games. Advances in Game-Based Learning. Springer, Cham. https://doi.org/10.1007/978-3-319-20276-1_2

Download citation

Publish with us

Policies and ethics