Skip to main content

Anisotropic Distributions on Manifolds: Template Estimation and Most Probable Paths

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9123))

Included in the following conference series:

Abstract

We use anisotropic diffusion processes to generalize normal distributions to manifolds and to construct a framework for likelihood estimation of template and covariance structure from manifold valued data. The procedure avoids the linearization that arise when first estimating a mean or template before performing PCA in the tangent space of the mean. We derive flow equations for the most probable paths reaching sampled data points, and we use the paths that are generally not geodesics for estimating the likelihood of the model. In contrast to existing template estimation approaches, accounting for anisotropy thus results in an algorithm that is not based on geodesic distances. To illustrate the effect of anisotropy and to point to further applications, we present experiments with anisotropic distributions on both the sphere and finite dimensional LDDMM manifolds arising in the landmark matching problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use the notation \(\tilde{p}(x_t)\) for path densities and p(y) for point densities.

  2. 2.

    If M has more structure, e.g. being a Lie group or a homogeneous space, additional equivalent ways of defining Brownian motion and heat semi-groups exist.

  3. 3.

    In both cases, the representation is not unique because different matrices W/frames \(X_\alpha \) can lead to the same diffusion. Instead, the MLE can be specified by the symmetric positive matrix \(\varSigma =WW^T\) or, in the manifold situation, be considered an element of the bundle of symmetric positive covariant 2-tensors.

References

  1. Andersson, L., Driver, B.K.: Finite dimensional approximations to wiener measure and path integral formulas on manifolds. J. Funct. Anal. 165(2), 430–498 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Fletcher, P., Lu, C., Pizer, S., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23(8), 995–1005 (2004)

    Article  Google Scholar 

  3. Fujita, T., Kotani, S.I.: The Onsager-Machlup function for diffusion processes. J. Math. Kyoto Univ. 22(1), 115–130 (1982)

    MATH  MathSciNet  Google Scholar 

  4. Hsu, E.P.: Stochastic Analysis on Manifolds. American Mathematical Society, Providence (2002)

    Book  MATH  Google Scholar 

  5. Huckemann, S., Hotz, T., Munk, A.: Intrinsic shape analysis: geodesic PCA for Riemannian manifolds modulo isometric Lie group actions. Statistica Sin. 20, 1–100 (2010)

    MATH  MathSciNet  Google Scholar 

  6. Joshi, S., Davis, B., Jomier, B.M., B, G.G.: Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage 23, 151–160 (2004)

    Article  Google Scholar 

  7. Joshi, S., Miller, M.: Landmark matching via large deformation diffeomorphisms. IEEE Trans. Image Process. 9(8), 1357–1370 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kendall, D.G.: Shape manifolds, procrustean metrics, and complex projective spaces. Bull. Lond. Math. Soc. 16(2), 81–121 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  9. Micheli, M.: The differential geometry of landmark shape manifolds: metrics, geodesics, and curvature. Ph.D. thesis, Brown University, Providence, USA (2008)

    Google Scholar 

  10. Michor, P.W.: Topics in Differential Geometry. American Mathematical Society, Providence (2008)

    Book  MATH  Google Scholar 

  11. Michor, P.W., Mumford, D.: Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. 8, 1–48 (2004)

    MathSciNet  Google Scholar 

  12. Mok, K.P.: On the differential geometry of frame bundles of Riemannian manifolds. J. Fur Die Reine Angew. Math. 1978(302), 16–31 (1978)

    MathSciNet  Google Scholar 

  13. Nye, T.: Construction of distributions on Tree-Space via diffusion processes. Mathematisches Forschungsinstitut Oberwolfach (2014). http://www.mfo.de/document/1440a/preliminary_OWR_2014_44.pdf

  14. Pennec, X.: Intrinsic statistics on Riemannian manifolds: basic tools for geometric measurements. J. Math. imaging Vis. 25(1), 127–154 (2006)

    Article  MathSciNet  Google Scholar 

  15. Siddiqi, K., Pizer, S.: Medial Representations: Mathematics, Algorithms and Applications. Computational Imaging and Vision, 1st edn. Springer, Heidelberg (2008)

    Book  Google Scholar 

  16. Sommer, S.: Horizontal dimensionality reduction and iterated frame bundle development. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2013. LNCS, vol. 8085, pp. 76–83. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Sommer, S.: Diffusion processes and PCA on manifolds. Mathematisches Forschungsinstitut Oberwolfach (2014). http://www.mfo.de/document/1440a/preliminary_OWR_2014_44.pdf

  18. Sommer, S., Lauze, F., Hauberg, S., Nielsen, M.: Manifold valued statistics, exact principal geodesic analysis and the effect of linear approximations. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 43–56. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Strichartz, R.S.: Sub-Riemannian geometry. J. Differ. Geom. 24(2), 221–263 (1986). http://projecteuclid.org/euclid.jdg/1214440436

    MATH  MathSciNet  Google Scholar 

  20. Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. J. Roy. Stat. Soc. B 61(3), 611–622 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Vaillant, M., Miller, M., Younes, L., Trouv, A.: Statistics on diffeomorphisms via tangent space representations. NeuroImage 23(Supplement 1), S161–S169 (2004)

    Article  Google Scholar 

  22. Vialard, F.-X., Risser, L.: Spatially-varying metric learning for diffeomorphic image registration: a variational framework. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part I. LNCS, vol. 8673, pp. 227–234. Springer, Heidelberg (2014)

    Google Scholar 

  23. Younes, L.: Shapes and Diffeomorphisms. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  24. Zhang, M., Fletcher, P.: Probabilistic principal geodesic analysis. In: NIPS, pp. 1178–1186 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Sommer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sommer, S. (2015). Anisotropic Distributions on Manifolds: Template Estimation and Most Probable Paths. In: Ourselin, S., Alexander, D., Westin, CF., Cardoso, M. (eds) Information Processing in Medical Imaging. IPMI 2015. Lecture Notes in Computer Science(), vol 9123. Springer, Cham. https://doi.org/10.1007/978-3-319-19992-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19992-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19991-7

  • Online ISBN: 978-3-319-19992-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics