Skip to main content

On the Fixed Parameter Tractability and Approximability of the Minimum Error Correction Problem

  • Conference paper
  • First Online:
Combinatorial Pattern Matching (CPM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9133))

Included in the following conference series:

Abstract

Haplotype assembly is the computational problem of reconstructing the two parental copies, called haplotypes, of each chromosome starting from sequencing reads, called fragments, possibly affected by sequencing errors. Minimum Error Correction (MEC) is a prominent computational problem for haplotype assembly and, given a set of fragments, aims at reconstructing the two haplotypes by applying the minimum number of base corrections.

By using novel combinatorial properties of MEC instances, we are able to provide new results on the fixed-parameter tractability and approximability of MEC. In particular, we show that MEC is in FPT when parameterized by the number of corrections, and, on “gapless” instances, it is in FPT also when parameterized by the length of the fragments, whereas the result known in literature forces the reconstruction of complementary haplotypes. Then, we show that MEC cannot be approximated within any constant factor while it is approximable within factor \(O(\log nm)\) where \(n m\) is the size of the input. Finally, we provide a practical 2-approximation algorithm for the Binary MEC, a variant of MEC that has been applied in the framework of clustering binary data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguiar, D., Istrail, S.: HapCompass: a fast cycle basis algorithm for accurate haplotype assembly of sequence data. J. Comput. Biol. 19(6), 577–590 (2012)

    Article  MathSciNet  Google Scholar 

  2. Bansal, V., Bafna, V.: HapCUT: an efficient and accurate algorithm for the haplotype assembly problem. Bioinformatics 24(16), i153–i159 (2008)

    Article  Google Scholar 

  3. Bonizzoni, P., Della Vedova, G., Dondi, R., Li, J.: The haplotyping problem: an overview of computational models and solutions. J. Comput. Sci. Techol. 18(6), 675–688 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Browning, B., Browning, S.: Haplotypic analysis of Wellcome Trust case control consortium data. Hum. Genet. 123(3), 273–280 (2008)

    Article  Google Scholar 

  5. Chen, Z.Z., Deng, F., Wang, L.: Exact algorithms for haplotype assembly from whole-genome sequence data. Bioinformatics 29(16), 1938–45 (2013)

    Article  Google Scholar 

  6. Cilibrasi, R., Van Iersel, L., Kelk, S., Tromp, J.: The complexity of the single individual SNP haplotyping problem. Algorithmica 49(1), 13–36 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dondi, R.: New results for the Longest Haplotype Reconstruction problem. Discrete Appl. Math. 160(9), 1299–1310 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fouilhoux, P., Mahjoub, A.: Solving VLSI design and DNA sequencing problems using bipartization of graphs. Comput. Optim. Appl. 51(2), 749–781 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)

    MATH  Google Scholar 

  10. Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi) cut theorems and their applications. SIAM J. Comput. 25(2), 235–251 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Guo, J., et al.: Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization. J. Comput. Syst. Sci. 72(8), 1386–1396 (2006)

    Article  MATH  Google Scholar 

  12. Halldórsson, B.V., Aguiar, D., Istrail, S.: Haplotype phasing by multi-assembly of shared haplotypes: phase-dependent interactions between rare variants. In: PSB, pp. 88–99. World Scientific Publishing (2011)

    Google Scholar 

  13. He, D., et al.: Optimal algorithms for haplotype assembly from whole-genome sequence data. Bioinformatics 26(12), i183–i190 (2010)

    Article  Google Scholar 

  14. Jiao, Y., Xu, J., Li, M.: On the k-closest substring and k-consensus pattern problems. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 130–144. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Khot, S.: On the power of unique 2-prover 1-round games. In: STOC, pp. 767–775. ACM (2002)

    Google Scholar 

  16. Kleinberg, J., Papadimitriou, C., Raghavan, P.: Segmentation problems. In: STOC, pp. 473–482. ACM (1998)

    Google Scholar 

  17. Lancia, G., Bafna, V., Istrail, S., Lippert, R., Schwartz, R.: SNPs problems, complexity, and algorithms. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 182–193. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Lippert, R., Schwartz, R., Lancia, G., Istrail, S.: Algorithmic strategies for the single nucleotide polymorphism haplotype assembly problem. Brief. Bioinform. 3(1), 23–31 (2002)

    Article  Google Scholar 

  19. Ostrovsky, R., Rabani, Y.: Polynomial-time approximation schemes for geometric min-sum median clustering. J. ACM 49(2), 139–156 (2002)

    Article  MathSciNet  Google Scholar 

  20. Patterson, M., Marschall, T., Pisanti, N., van Iersel, L., Stougie, L., Klau, G.W., Schönhuth, A.: WhatsHap: haplotype assembly for future-generation sequencing reads. In: Sharan, R. (ed.) RECOMB 2014. LNCS (LNBI), vol. 8394, pp. 237–249. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  21. Pirola, Y., Bonizzoni, P., Jiang, T.: An efficient algorithm for haplotype inference on pedigrees with recombinations and mutations. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(1), 12–25 (2012)

    Article  Google Scholar 

  22. Pirola, Y., et al.: Haplotype-based prediction of gene alleles using pedigrees and SNP genotypes. In: BCB, pp. 33–41. ACM (2013)

    Google Scholar 

  23. Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32(4), 299–301 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been stimulated by discussions between PB, GK, and NP during the No.045 NII Shonan workshop on Exact Algorithms for Bioinformatics Research, March 2014, Japan.

The authors acknowledge the support of the MIUR PRIN 2010-2011 grant 2010LYA9RH (Automi e Linguaggi Formali: Aspetti Matematici e Applicativi), of the Cariplo Foundation grant 2013-0955 (Modulation of anti cancer immune response by regulatory non-coding RNAs), of the FA 2013 grant (Metodi algoritmici e modelli: aspetti teorici e applicazioni in bioinformatica).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Zaccaria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bonizzoni, P., Dondi, R., Klau, G.W., Pirola, Y., Pisanti, N., Zaccaria, S. (2015). On the Fixed Parameter Tractability and Approximability of the Minimum Error Correction Problem. In: Cicalese, F., Porat, E., Vaccaro, U. (eds) Combinatorial Pattern Matching. CPM 2015. Lecture Notes in Computer Science(), vol 9133. Springer, Cham. https://doi.org/10.1007/978-3-319-19929-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19929-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19928-3

  • Online ISBN: 978-3-319-19929-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics