Skip to main content

The Effective-One-Body Approach to the General Relativistic Two Body Problem

  • Chapter

Part of the book series: Lecture Notes in Physics ((LNP,volume 905))

Abstract

The two-body problem in General Relativity has been the subject of many analytical investigations. After reviewing some of the methods used to tackle this problem (and, more generally, the N-body problem), we focus on a new, recently introduced approach to the motion and radiation of (comparable mass) binary systems: the Effective One Body (EOB) formalism. We review the basic elements of this formalism, and discuss some of its recent developments. Several recent comparisons between EOB predictions and Numerical Relativity (NR) simulations have shown the aptitude of the EOB formalism to provide accurate descriptions of the dynamics and radiation of various binary systems (comprising black holes or neutron stars) in regimes that are inaccessible to other analytical approaches (such as the last orbits and the merger of comparable mass black holes). In synergy with NR simulations, post-Newtonian (PN) theory and Gravitational Self-Force (GSF) computations, the EOB formalism is likely to provide an efficient way of computing the very many accurate template waveforms that are needed for Gravitational Wave (GW) data analysis purposes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This is related to an idea emphasized many times by John Archibald Wheeler: quantum mechanics can often help us in going to the essence of classical mechanics.

  2. 2.

    We consider, for simplicity, ‘equatorial’ motions with m = , i.e., classically, \(\theta = \frac{\pi } {2}\).

  3. 3.

    It is convenient to write the ‘effective metric’ in Schwarzschild-like coordinates. Note that the effective radial coordinate R differs from the two-body ADM-coordinate relative distance \(R^{\mathrm{ADM}} =\vert \boldsymbol{q}\vert\). The transformation between the two coordinate systems has been determined in [32, 61].

  4. 4.

    Indeed \(E_{\mathrm{real}}^{\mathrm{total}} = Mc^{2} + E_{\mathrm{real}}^{\mathrm{relative}} = Mc^{2} + \mbox{ Newtonian terms} + \mathrm{1PN}/c^{2} + \cdots \), while \(\mathcal{E}_{\mathrm{effective}} =\mu c^{2} + N + \mathrm{1PN}/c^{2} + \cdots \).

  5. 5.

    The PN-expanded EOB building blocks \(A_{3\mathrm{PN}}(R),B_{3\mathrm{PN}}(R),\ldots\) already represent a resummation of the PN dynamics in the sense that they have “condensed” the many terms of the original PN-expanded Hamiltonian within a very concise format. But one should not refrain to further resum the EOB building blocks themselves, if this is physically motivated.

  6. 6.

    We recall that the coefficients n 1 and \((d_{1},d_{2},d_{3})\) of the (1, 3) Padé approximate \(P_{3}^{1}[A_{\mathrm{3PN}}(u)]\) are determined by the condition that the first four terms of the Taylor expansion of A 3 1 in powers of \(u = GM/(c^{2}R)\) coincide with A 3PN.

  7. 7.

    The new, resummed EOB waveform discussed above was not available at the time, so that these comparisons employed the coarser “Newtonian-level” EOB waveform \(h_{22}^{(N,\epsilon )}(x)\).

  8. 8.

    The two “pinching” frequencies used for this comparison are M ω 1 = 0. 047 and M ω 2 = 0. 31.

  9. 9.

    Including the effective-field-theory reformulation of the computation of the PN-expanded Fokker-action [47, 89].

References

  1. Akcay, S., Barack, L., Damour, T., Sago, N.: Gravitational self-force and the effective-one-body formalism between the innermost stable circular orbit and the light ring. Phys. Rev. D86, 104041 (2012). http://dx.doi.org/10.1103/PhysRevD.86.104041DOI; http://arxiv.org/abs/1209.0964arXiv:1209.0964[gr-qc]

  2. Baker, J.G., Centrella, J., Choi, D.I., Koppitz, M., van Meter, J.: Gravitational wave extraction from an inspiraling configuration of merging black holes. Phys. Rev. Lett. 96, 111102 (2006). http://arxiv.org/abs/gr-qc/0511103gr-qc/0511103

  3. Baiotti, L., Damour, T., Giacomazzo, B., Nagar, A., Rezzolla, L.: Analytic modelling of tidal effects in the relativistic inspiral of binary neutron stars. Phys. Rev. Lett. 105, 261101 (2010). http://arxiv.org/abs/1009.0521 [gr-qc]1009.0521 [gr-qc]

  4. Baiotti, L., Damour, T., Giacomazzo, B., Nagar, A., Rezzolla, L.: Accurate numerical simulations of inspiralling binary neutron stars and their comparison with effective-one-body analytical models. Phys. Rev. D 84, 024017 (2011). http://arxiv.org/abs/1103.3874 [gr-qc]1103.3874 [gr-qc]

  5. Barack, L.: Gravitational self force in extreme mass-ratio inspirals. Class. Quantum Gravity 26, 213001 (2009). http://arxiv.org/abs/0908.1664 [gr-qc]0908.1664 [gr-qc]

    Google Scholar 

  6. Barack, L., Damour, T., Sago, N.: Precession effect of the gravitational self-force in a Schwarzschild spacetime and the effective one-body formalism. Phys. Rev. D 82, 084036 (2010). http://arxiv.org/abs/1008.0935 [gr-qc]1008.0935 [gr-qc]

  7. Barausse, E., Buonanno, A.: An Improved effective-one-body Hamiltonian for spinning black-hole binaries. Phys. Rev. D 81, 084024 (2010). http://arxiv.org/abs/0912.3517 [gr-qc]0912.3517 [gr-qc]

  8. Barausse, E., Buonanno, A.: Extending the effective-one-body Hamiltonian of black-hole binaries to include next-to-next-to-leading spin-orbit couplings. Phys. Rev. D 84, 104027 (2011). http://arxiv.org/abs/1107.2904 [gr-qc]1107.2904 [gr-qc]

  9. Barausse, E., Racine, E., Buonanno, A.: Hamiltonian of a spinning test-particle in curved spacetime [Erratum-ibid. D 85, 069904 (2012)]. Phys. Rev. D 80, 104025 (2009). http://arxiv.org/abs/0907.4745 [gr-qc]0907.4745 [gr-qc]

  10. Barausse, E., Buonanno, A., Hughes, S.A., Khanna, G., O’Sullivan, S., et al.: Modeling multipolar gravitational-wave emission from small mass-ratio mergers. Phys. Rev. D85, 024046 (2012). http://dx.doi.org/10.1103/PhysRevD.85.024046DOI; http://arxiv.org/abs/1110.3081arXiv:1110.3081[gr-qc]

  11. Barausse, E., Buonanno, A., Le Tiec, A.: The complete non-spinning effective-one-body metric at linear order in the mass ratio. Phys. Rev. D 85, 064010 (2012). http://arxiv.org/abs/1111.5610 [gr-qc]1111.5610 [gr-qc]

  12. Bernuzzi, S., Nagar, A., Zenginoglu, A.: Binary black hole coalescence in the extreme-mass-ratio limit: testing and improving the effective-one-body multipolar waveform. Phys. Rev. D 83, 064010 (2011). http://arxiv.org/abs/1012.2456 [gr-qc]1012.2456 [gr-qc]

  13. Bernuzzi, S., Nagar, A., Thierfelder, M., Brugmann, B.: Tidal effects in binary neutron star coalescence. Phys. Rev. D 86, 044030 (2012) (arXiv:1205.3403 [gr-qc])

    Google Scholar 

  14. Bernuzzi, S., Nagar, A., Balmelli, S., Dietrich, T., Ujevic, M.: Quasiuniversal properties of neutron star mergers. Phys. Rev. Lett. 112, 201101 (2014) (arXiv:1402.6244 [gr-qc])

    Google Scholar 

  15. Berti, E., Cardoso, V., Gonzalez, J.A., Sperhak, U., Hannam, M., Husa, S., Bruegmann, B.: Inspiral, merger and ringdown of unequal mass black hole binaries: a multipolar analysis. Phys. Rev. D 76, 064034 (2007). http://arxiv.org/abs/gr-qc/0703053gr-qc/0703053

  16. Bini, D., Damour, T.: Gravitational radiation reaction along general orbits in the effective one-body formalism. Phys. Rev. D 86, 124012 (2012). http://arxiv.org/abs/1210.2834[gr-qc]1210.2834[gr-qc]

    Google Scholar 

  17. Bini, D., Damour, T.: Gravitational radiation reaction along general orbits in the effective one-body formalism. Phys. Rev. D 86, 124012 (2012) (arXiv:1210.2834 [gr-qc])

    Google Scholar 

  18. Bini, D., Damour, T.: Analytical determination of the two-body gravitational interaction potential at the 4th post-Newtonian approximation. Phys. Rev. D 87, 121501(R) (2013) (arXiv:1305.4884 [gr-qc])

    Google Scholar 

  19. Bini, D., Damour, T., Faye, G.: Effective action approach to higher-order relativistic tidal interactions in binary systems and their effective one body description. Phys. Rev. D 85, 124034 (2012). http://arxiv.org/abs/1202.3565 [gr-qc]1202.3565 [gr-qc]

  20. Blanchet, L.: Gravitational radiation from post-newtonian sources and inspiralling compact binaries (arXiv:1310.1528 [gr-qc])

    Google Scholar 

  21. Blanchet, L.: Gravitational-wave tails of tails [Erratum-ibid. 22, 3381 (2005)]. Class. Quantum Gravity 15, 113 (1998). http://arxiv.org/abs/gr-qc/9710038gr-qc/9710038

    Google Scholar 

  22. Blanchet, L., Damour, T.: Postnewtonian generation of gravitational waves. Ann. Poincaré Phys. Theor. 50, 377 (1989)

    MATH  MathSciNet  ADS  Google Scholar 

  23. Blanchet, L., Damour, T.: Hereditary effects in gravitational radiation. Phys. Rev. D 46, 4304 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  24. Blanchet, L., Faye, G.: General relativistic dynamics of compact binaries at the third post-Newtonian order. Phys. Rev. D 63, 062005 (2001). http://arxiv.org/abs/gr-qc/0007051gr-qc/0007051

  25. Blanchet, L., Damour, T. Esposito-Farèse, G.: Dimensional regularization of the third post-Newtonian dynamics of point particles in harmonic coordinates. Phys. Rev. D 69, 124007 (2004). http://arxiv.org/abs/gr-qc/0311052gr-qc/0311052

  26. Blanchet, L., Damour, T., Esposito-Farèse, G., Iyer, B.R.: Gravitational radiation from inspiralling compact binaries completed at the third post-Newtonian order. Phys. Rev. Lett. 93, 091101 (2004). http://arxiv.org/abs/gr-qc/0406012gr-qc/0406012

  27. Blanchet, L., Faye, G., Iyer, B.R., Sinha, S.: The third post-Newtonian gravitational wave polarisations and associated spherical harmonic modes for inspiralling compact binaries in quasi-circular orbits. Class. Quantum Gravity 25, 165003 (2008). http://arxiv.org/abs/0802.1249 [gr-qc]0802.1249 [gr-qc]

    Google Scholar 

  28. Blanchet, L., Detweiler, S.L., Le Tiec, A., Whiting, B.F.: High-order post-Newtonian fit of the gravitational self-force for circular orbits in the Schwarzschild geometry. Phys. Rev. D 81, 084033 (2010). http://arxiv.org/abs/1002.0726 [gr-qc]1002.0726 [gr-qc]

  29. Boyle, M. et al.: High-accuracy comparison of numerical relativity simulations with post-Newtonian expansions. Phys. Rev. D 76, 124038 (2007). http://arxiv.org/abs/0710.0158 [gr-qc]0710.0158 [gr-qc]

  30. Brumberg, V.A.: Essential Relativistic Celestial Mechanics. Adam Hilger Editor, Bristol (1991)

    MATH  Google Scholar 

  31. Brézin, E., Itzykson, C., Zinn-Justin, J.: Relativistic balmer formula including recoil effects. Phys. Rev. D 1, 2349 (1970)

    Article  ADS  Google Scholar 

  32. Buonanno, A., Damour, T.: Effective one-body approach to general relativistic two-body dynamics. Phys. Rev. D 59, 084006 (1999). http://arxiv.org/abs/gr-qc/9811091gr-qc/9811091

  33. Buonanno, A., Damour, T.: Transition from inspiral to plunge in binary black hole coalescences. Phys. Rev. D 62, 064015 (2000). http://arxiv.org/abs/gr-qc/0001013gr-qc/0001013

  34. Buonanno, A., Chen, Y., Damour, T.: Transition from inspiral to plunge in precessing binaries of spinning black holes. Phys. Rev. D 74, 104005 (2006). http://arxiv.org/abs/gr-qc/0508067gr-qc/0508067

  35. Buonanno, A., Cook, G.B., Pretorius, F.: Inspiral, merger and ring-down of equal-mass black-hole binaries. Phys. Rev. D 75, 124018 (2007). http://arxiv.org/abs/gr-qc/0610122gr-qc/0610122

  36. Buonanno, A., Pan, Y., Baker, J.G., Centrella, J., Kelly, B.J., McWilliams, S.T., van Meter, J.R.: Toward faithful templates for non-spinning binary black holes using the effective-one-body approach. Phys. Rev. D 76, 104049 (2007). http://arxiv.org/abs/0706.3732 [gr-qc]0706.3732 [gr-qc]

  37. Buonanno, A., Pan, Y., Pfeiffer, H.P., Scheel, M.A., Buchman, L.T., Kidder, L.E.: Effective-one-body waveforms calibrated to numerical relativity simulations: coalescence of non-spinning, equal-mass black holes. Phys. Rev. D 79, 124028 (2009). http://arxiv.org/abs/0902.0790 [gr-qc]0902.0790 [gr-qc]

  38. Campanelli, M., Lousto, C.O., Marronetti, P. Zlochower, Y.: Accurate evolutions of orbiting black-hole binaries without excision. Phys. Rev. Lett. 96, 111101 (2006). http://arxiv.org/abs/gr-qc/0511048gr-qc/0511048

  39. Chazy, J.: La théorie de la Relativité et la Mécanique Céleste, vols. 1, 2. Gauthier-Villars, Paris (1928/1930)

    Google Scholar 

  40. Colpi, M., et al. (ed.): Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence. Astrophysics and Space Science Library, vol. 359. Springer, Dordrecht (2009)

    Google Scholar 

  41. Damour, T.: Problème des deux corps et freinage de rayonnement en relativité générale. C. R. Acad. Sci. Paris Sér. II 294, 1355–1357 (1982)

    MathSciNet  Google Scholar 

  42. Damour, T.: Coalescence of two spinning black holes: an effective one-body approach. Phys. Rev. D 64, 124013 (2001). http://arxiv.org/abs/gr-qc/0103018gr-qc/0103018

  43. Damour, T.: Gravitational Self force in a schwarzschild background and the effective one body formalism. Phys. Rev. D 81, 024017 (2010). http://arxiv.org/abs/0910.5533 [gr-qc]0910.5533 [gr-qc]

  44. Damour, T.: Gravitational radiation and the motion of compact bodies. In: Deruelle, N., Piran, T. (eds.) Gravitational Radiation, pp. 59–144. North-Holland, Amsterdam (1983)

    Google Scholar 

  45. Damour, T.: (unpublished); cited in Ref. [6], which quoted and used some combinations of the logarithmic contributions to a(u) and \(\bar{d}(u)\) (2010)

    Google Scholar 

  46. Damour, T., Deruelle, N.: Radiation reaction and angular momentum loss in small angle gravitational scattering. Phys. Lett. A 87, 81 (1981)

    Article  ADS  Google Scholar 

  47. Damour, T., Esposito-Farese, G.: Testing gravity to second postNewtonian order: a field theory approach. Phys. Rev. D 53, 5541 (1996) [gr-qc/9506063]

    Google Scholar 

  48. Damour, T., Esposito-Farèse, G.: Gravitational-wave versus binary-pulsar tests of strong-field gravity. Phys. Rev. D 58, 042001 (1998)

    Article  ADS  Google Scholar 

  49. Damour, T., Gopakumar, A.: Gravitational recoil during binary black hole coalescence using the effective one body approach. Phys. Rev. D 73, 124006 (2006). http://arxiv.org/abs/gr-qc/0602117gr-qc/0602117

  50. Damour, T., Iyer, B.R.: PostNewtonian generation of gravitational waves, 2. The spin moments. Ann. Poincaré Phys. Theor. 54, 115 (1991)

    Google Scholar 

  51. Damour, T., Nagar, A.: Faithful effective-one-body waveforms of small-mass-ratio coalescing black-hole binaries. Phys. Rev. D 76, 064028 (2007). http://arxiv.org/abs/0705.2519 [gr-qc]0705.2519 [gr-qc]

  52. Damour, T., Nagar, A.: Final spin of a coalescing black-hole binary: an effective-one-body approach. Phys. Rev. D 76, 044003 (2007). http://arxiv.org/abs/0704.3550 [gr-qc]0704.3550 [gr-qc]

  53. Damour, T., Nagar, A.: Comparing effective-one-body gravitational waveforms to accurate numerical data. Phys. Rev. D 77, 024043 (2008). http://arxiv.org/abs/0711.2628 [gr-qc]0711.2628 [gr-qc]

  54. Damour, T., Nagar, A.: A new effective-one-body description of coalescing nonprecessing spinning black-hole binaries (arXiv:1406.6913 [gr-qc])

    Google Scholar 

  55. Damour, T., Nagar, A.: An improved analytical description of inspiralling and coalescing black-hole binaries. Phys. Rev. D 79, 081503 (2009). http://arxiv.org/abs/0902.0136 [gr-qc]0902.0136 [gr-qc]

  56. Damour, T., Nagar, A.: The effective one body description of the two-body problem. Fundam. Theor. Phys. 162, 211 (2011). http://arxiv.org/abs/0906.1769 [gr-qc]0906.1769 [gr-qc]

  57. Damour, T., Schäfer, G.: Higher order relativistic periastron advances and binary pulsars. Nuovo Cimento B 101, 127 (1988)

    Article  ADS  Google Scholar 

  58. Damour, T., Soffel, M., Xu, C.M.: General relativistic celestial mechanics. (1) Method and definition of reference system. Phys. Rev. D 43, 3273 (1991); General relativistic celestial mechanics. (2) Translational equations of motion. Phys. Rev. D 45, 1017 (1992); General relativistic celestial mechanics. (3) Rotational equations of motion. Phys. Rev. D 47, 3124 (1993); General relativistic celestial mechanics. (4) Theory of satellite motion. Phys. Rev. D 49, 618 (1994)

    Google Scholar 

  59. Damour, T., Iyer, B.R., Sathyaprakash, B.S.: Improved filters for gravitational waves from inspiralling compact binaries. Phys. Rev. D 57, 885 (1998). http://arxiv.org/abs/gr-qc/9708034gr-qc/9708034

    Google Scholar 

  60. Damour, T., Jaranowski, P., Schäfer, G.: Dynamical invariants for general relativistic two-body systems at the third postNewtonian approximation. Phys. Rev. D 62, 044024 (2000). http://arxiv.org/abs/gr-qc/9912092gr-qc/9912092

  61. Damour, T., Jaranowski, P., Schäfer, G.: On the determination of the last stable orbit for circular general relativistic binaries at the third post-Newtonian approximation. Phys. Rev. D 62, 084011 (2000). http://arxiv.org/abs/gr-qc/0005034gr-qc/0005034

  62. Damour, T., Jaranowski, P., Schäfer, G.: Poincaré invariance in the ADM Hamiltonian approach to the general relativistic two-body problem [Erratum-ibid. D 63, 029903 (2001)]. Phys. Rev. D 62, 021501 (2000). http://arxiv.org/abs/gr-qc/0003051gr-qc/0003051

  63. Damour, T., Jaranowski, P., Schäfer, G.: Dimensional regularization of the gravitational interaction of point masses. Phys. Lett. B 513, 147–155 (2001). http://arxiv.org/abs/gr-qc/0105038gr-qc/0105038

    Google Scholar 

  64. Damour, T., Gourgoulhon, E., Grandclément, P.: Circular orbits of corotating binary black holes: Comparison between analytical and numerical results. Phys. Rev. D 66, 024007 (2002). http://arxiv.org/abs/gr-qc/0204011gr-qc/0204011

  65. Damour, T., Nagar, A., Tartaglia, A.: Binary black hole merger in the extreme mass ratio limit. Class. Quantum Gravity 24, S109 (2007). http://arxiv.org/abs/gr-qc/0612096gr-qc/0612096

  66. Damour, T., Nagar, A., Hannam, M., Husa, S., Bruegmann, B.: Accurate effective-one-body waveforms of inspiralling and coalescing black-hole binaries. Phys. Rev. D 78, 044039 (2008). http://arxiv.org/abs/0803.3162 [gr-qc]0803.3162 [gr-qc]

  67. Damour, T., Nagar, A., Nils Dorband, E., Pollney, D., Rezzolla, L.: Faithful effective-one-body waveforms of equal-mass coalescing black-hole binaries. Phys. Rev. D 77, 084017 (2008). http://arxiv.org/abs/0712.3003 [gr-qc]0712.3003 [gr-qc]

  68. Damour, T., Jaranowski, P., Schäfer, G.: Effective one body approach to the dynamics of two spinning black holes with next-to-leading order spin-orbit coupling. Phys. Rev. D 78, 024009 (2008). http://arxiv.org/abs/0803.0915 [gr-qc]0803.0915 [gr-qc]

  69. Damour, T., Iyer, B.R., Nagar, A.: Improved resummation of post-Newtonian multipolar waveforms from circularized compact binaries. Phys. Rev. D 79, 064004 (2009). http://arxiv.org/abs/0811.2069 [gr-qc]0811.2069 [gr-qc]

  70. Damour, T., Nagar, A.: Effective One Body description of tidal effects in inspiralling compact binaries. Phys. Rev. D 81, 084016 (2010). http://arxiv.org/abs/0911.5041 [gr-qc]0911.5041 [gr-qc]

  71. Damour, T., Nagar, A., Pollney, D., Reisswig, C.: Energy versus Angular momentum in black hole binaries. Phys. Rev. Lett. 108, 131101 (2012). http://arxiv.org/abs/1110.2938 [gr-qc]1110.2938 [gr-qc]

  72. Damour, T., Nagar, A., Villain, L.: Measurability of the tidal polarizability of neutron stars in late-inspiral gravitational-wave signals. Phys. Rev. D 85, 123007 (2012) (arXiv:1203.4352 [gr-qc])

    Google Scholar 

  73. Damour, T., Nagar, A., Bernuzzi, S.: Improved effective-one-body description of coalescing nonspinning black-hole binaries and its numerical-relativity completion. Phys. Rev. D 87, 084035 (2013) (arXiv:1212.4357 [gr-qc])

    Google Scholar 

  74. Damour, T., Nagar, A., Villain, L.: Merger states and final states of black hole coalescences: a numerical-relativity-assisted effective-one-body approach (arXiv:1307.2868 [gr-qc])

    Google Scholar 

  75. Damour, T., Guercilena, F., Hinder, I., Hopper, S., Nagar, A., Rezzolla, L.: Strong-field scattering of two black holes: numerics versus analytics. Phys. Rev. D 89, 081503 (2014) (arXiv:1402.7307 [gr-qc])

    Google Scholar 

  76. Davis, M., Ruffini, R., Tiomno, J.: Pulses of gravitational radiation of a particle falling radially into a Schwarzschild black hole. Phys. Rev. D 5, 2932 (1972)

    Article  ADS  Google Scholar 

  77. De Sitter, W.: Mon. Not. R. Astron. Soc. 76, 699–728 (1916); 77, 155–184 (1916)

    Google Scholar 

  78. D’Eath, P.D.: Phys. Rev. D 11, 1387 (1975)

    Article  ADS  Google Scholar 

  79. Droste, J.: Versl. K. Akad. Wet. Amsterdam 19, 447–455 (1916)

    Google Scholar 

  80. Del Pozzo, W., Li, T.G.F., Agathos, M., Broeck, C.V.D., Vitale, S.: Demonstrating the feasibility of probing the neutron star equation of state with second-generation gravitational wave detectors (arXiv:1307.8338 [gr-qc])

    Google Scholar 

  81. Eardley, D.M.: Astrophys. J. 196, L59 (1975)

    Article  ADS  Google Scholar 

  82. Eddington, A., Clark, G.L.: Proc. R. Soc. (Lond.) A166, 465–475 (1938)

    Google Scholar 

  83. Einstein, A., Infeld, L., Hoffmann, B.: Ann. Math. 39, 65–100 (1938)

    Article  MathSciNet  ADS  Google Scholar 

  84. Flanagan, E.E., Hinderer, T.: Constraining neutron star tidal Love numbers with gravitational wave detectors. Phys. Rev. D 77, 021502 (2008) (arXiv:0709.1915 [astro-ph])

    Google Scholar 

  85. Fock, V.A.: Zh. Eksp. i. Teor. Fiz. 9, 375 (1939)

    ADS  Google Scholar 

  86. Fock, V.A.: The Theory of Space, Time and Gravitation Russian edition. State Technical Publications, Moscow (1955)

    Google Scholar 

  87. Foffa, S., Sturani, R.: Effective field theory calculation of conservative binary dynamics at third post-Newtonian order. Phys. Rev. D 84, 044031 (2011). http://arxiv.org/abs/1104.1122 [gr-qc]1104.1122 [gr-qc]

  88. Foffa, S., Sturani, R.: Dynamics of the gravitational two-body problem at fourth post-Newtonian order and at quadratic order in the Newton constant. Phys. Rev. D 87(6), 064011 (2013) (arXiv:1206.7087 [gr-qc])

    Google Scholar 

  89. Foffa, S., Sturani, R.: Effective field theory methods to model compact binaries (arXiv:1309.3474 [gr-qc])

    Google Scholar 

  90. Fujita, R., Iyer, B.R.: Spherical harmonic modes of 5.5 post-Newtonian gravitational wave polarisations and associated factorised resummed waveforms for a particle in circular orbit around a Schwarzschild black hole. Phys. Rev. D 82, 044051 (2010). http://arxiv.org/abs/1005.2266 [gr-qc]1005.2266 [gr-qc]

  91. Fujita, R.: Gravitational radiation for extreme mass ratio inspirals to the 14th post-Newtonian order. Prog. Theor. Phys. 127, 583 (2012). http://arxiv.org/abs/1104.5615 [gr-qc]1104.5615 [gr-qc]

    Google Scholar 

  92. Goldberger, W.D. Rothstein, I.Z.: An Effective field theory of gravity for extended objects. Phys. Rev. D73, 104029, (2006). http://dx.doi.org/10.1103/PhysRevD.73.104029DOI; http://arxiv.org/abs/hep-th/0409156arXiv:hep-th/0409156[hep-th]

  93. Gonzalez, J.A., Sperhake, U., Bruegmann, B., Hannam, M., Husa, S.: Total recoil: the maximum kick from nonspinning black-hole binary inspiral. Phys. Rev. Lett. 98, 091101 (2007). http://arxiv.org/abs/gr-qc/0610154gr-qc/0610154

  94. Hannam, M., Husa, S., Bruegmann, B., Gopakumar, A.: Comparison between numerical-relativity and post-Newtonian waveforms from spinning binaries: the orbital hang-up case. Phys. Rev. D 78, 104007 (2008). http://arxiv.org/abs/0712.3787 [gr-qc]0712.3787 [gr-qc]

  95. Hinder, I., Buonanno, A., Boyle, M., Etienne, Z.B., Healy, J., Johnson-McDaniel, N.K., Nagar, A., Nakano, H., et al.: Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration (arXiv:1307.5307 [gr-qc])

    Google Scholar 

  96. Hinderer, T., Lackey, B.D., Lang, R.N., Read, J.S.: Tidal deformability of neutron stars with realistic equations of state and their gravitational wave signatures in binary inspiral. Phys. Rev. D 81, 123016 (2010) (arXiv:0911.3535 [astro-ph.HE])

    Google Scholar 

  97. Hinderer, T., Buonanno, A., Mroué, A.H., Hemberger, D.A., Lovelace, G., Pfeiffer, H.P.: Periastron advance in spinning black hole binaries: comparing effective-one-body and Numerical Relativity (arXiv:1309.0544 [gr-qc])

    Google Scholar 

  98. Hotokezaka, K., Kyutoku, K., Shibata, M.: Exploring tidal effects of coalescing binary neutron stars in numerical relativity. Phys. Rev. D 87(4), 044001 (2013) (arXiv:1301.3555 [gr-qc])

    Google Scholar 

  99. Infeld, L., Plebanski, J.: Motion and Relativity. Pergamon Press, Oxford (1960)

    MATH  Google Scholar 

  100. Itoh, Y., Futamase, T.: New derivation of a third post-Newtonian equation of motion for relativistic compact binaries without ambiguity. Phys. Rev. D 68, 121501 (2003). http://arxiv.org/abs/gr-qc/0310028gr-qc/0310028

  101. Jaranowski, P., Schäfer, G.: 3rd post-Newtonian higher order Hamilton dynamics for two-body point-mass systems [Erratum-ibid. D 63, 029902 (2001)]. Phys. Rev. D 57, 72–74 (1998). http://arxiv.org/abs/gr-qc/9712075gr-qc/9712075

  102. Jaranowski, P., Schafer, G.: Towards the 4th post-Newtonian Hamiltonian for two-point-mass systems. Phys. Rev. D 86, 061503 (2012) (arXiv:1207.5448 [gr-qc])

    Google Scholar 

  103. Jaranowski, P., Schäfer, G.: Dimensional regularization of local singularities in the 4th post-Newtonian two-point-mass Hamiltonian. Phys. Rev. D 87, 081503 (2013) (arXiv:1303.3225 [gr-qc])

    Google Scholar 

  104. Kates, R.E.: Phys. Rev. D 22, 1853 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  105. Kidder, L.E.: Using full information when computing modes of post-Newtonian waveforms from inspiralling compact binaries in circular orbit. Phys. Rev. D 77, 044016 (2008). http://arxiv.org/abs/0710.0614 [gr-qc]0710.0614 [gr-qc]

  106. Kopeikin, S.M.: Astron. Zh. 62, 889 (1985)

    ADS  Google Scholar 

  107. Kopeikin, S.M.: Celest. Mech. 44, 87 (1988); Brumberg, V.A., Kopejkin, S.M.: Nuovo Cimento B 103, 63 (1988); Klioner, S.A., Voinov, A.V.: Phys. Rev. D 48, 1451 (1993)

    Google Scholar 

  108. Klioner, S.A., Seidelman, P.K., Soffel, M.H. (eds.): Relativity in Fundamental Astronomy: Dynamics, Reference Frames and Data Analysis. Proceedings of the IAU Symposium 261. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  109. Levi-Civita, T.: Am. J. Math. 59, 9–22 (1937); Am. J. Math. 59, 225–234 (1937); Le problème des n corps en relativité générale. Mémorial des Sciences Mathématiques, vol. 116. Gauthier-Villars, Paris (1950)

    Google Scholar 

  110. Le Tiec, A., Mroue, A.H., Barack, L., Buonanno, A., Pfeiffer, H.P., Sago, N., Taracchini, A.: Periastron Advance in black hole binaries. Phys. Rev. Lett. 107, 141101 (2011). http://arxiv.org/abs/1106.3278 [gr-qc]1106.3278 [gr-qc]

  111. Le Tiec, A., Blanchet, L., Whiting, B.F.: The first law of binary black hole mechanics in general relativity and post-newtonian theory. Phys. Rev. D 85, 064039 (2012). http://arxiv.org/abs/1111.5378 [gr-qc]1111.5378 [gr-qc]

  112. Le Tiec, A., Barausse, E., Buonanno, A.: Gravitational self-force correction to the binding energy of compact binary systems. Phys. Rev. Lett. 108, 131103 (2012). http://arxiv.org/abs/1111.5609 [gr-qc]1111.5609 [gr-qc]

  113. Lorentz, H.A., Droste, J.: Versl. K. Akad. Wet. Amsterdam 26, 392 (1917); 26, 649 (1917)

    Google Scholar 

  114. Manasse, F.K.: J. Math. Phys. 4, 746 (1963)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  115. Mroue, A.H., Scheel, M.A., Szilagyi, B., Pfeiffer, H.P., Boyle, M., Hemberger, D.A., Kidder, L.E., Lovelace, G., et al.: A catalog of 171 high-quality binary black-hole simulations for gravitational-wave astronomy (arXiv:1304.6077 [gr-qc])

    Google Scholar 

  116. Nagar, A.: Effective one body Hamiltonian of two spinning black-holes with next-to-next-to-leading order spin-orbit coupling. Phys. Rev. D 84, 084028 (2011). http://arxiv.org/abs/1106.4349 [gr-qc]1106.4349 [gr-qc]

  117. Ohta, T., Okamura, H., Kimura, T., Hiida, K.: Physically acceptable solution of einstein’s equation for many-body system. Prog. Theor. Phys. 50, 492 (1973)

    Article  ADS  Google Scholar 

  118. Ohta, T., Okamura, H., Kimura, T., Hiida, K.: Coordinate condition and higher order gravitational potential in canonical formalism. Prog. Theor. Phys. 51, 1598 (1974)

    Article  ADS  Google Scholar 

  119. Okamura, H., Ohta, T., Kimura, T., Hiida, K.: Perturbation calculation of gravitational potentials. Prog. Theor. Phys. 50, 2066 (1973)

    Article  ADS  Google Scholar 

  120. Pretorius, F.: Evolution of binary black hole spacetimes. Phys. Rev. Lett. 95, 121101 (2005). http://arxiv.org/abs/gr-qc/0507014gr-qc/0507014

  121. Pretorius, F.: Binary black hole coalescence. In: Colpi, M. et al. (ed.) Relativistic Objects in Compact Binaries: From Birth to Coalescense. Springer/Canopus Publishing Limited, Bristol (2007). http://arxiv.org/abs/arXiv:0710.1338 [gr-qc]arXiv:0710.1338 [gr-qc]

  122. Price, R.H., Pullin, J.: Colliding black holes: the Close limit. Phys. Rev. Lett. 72, 3297 (1994). http://arxiv.org/abs/gr-qc/9402039gr-qc/9402039

    Google Scholar 

  123. Pan, Y., et al.: A data-analysis driven comparison of analytic and numerical coalescing binary waveforms: Nonspinning case. Phys. Rev. D 77, 024014 (2008). http://arxiv.org/abs/0704.1964 [gr-qc]0704.1964 [gr-qc]

  124. Pan, Y., Buonanno, A., Buchman, L.T., Chu, T., Kidder, L.E., Pfeiffer, H.P., Scheel, M.A.: Effective-one-body waveforms calibrated to numerical relativity simulations: coalescence of non-precessing, spinning, equal-mass black holes. Phys. Rev. D 81, 084041 (2010). http://arxiv.org/abs/0912.3466 [gr-qc]0912.3466 [gr-qc] (arXiv:0912.3466 [gr-qc])

  125. Pan, Y., Buonanno, A., Boyle, M., Buchman, L.T., Kidder, L.E., Pfeiffer, H.P., Scheel, M.A.: Inspiral-merger-ringdown multipolar waveforms of nonspinning black-hole binaries using the effective-one-body formalism. Phys. Rev. D 84, 124052 (2011). http://arxiv.org/abs/1106.1021 [gr-qc]1106.1021 [gr-qc]

  126. Pan, Y., Buonanno, A., Fujita, R., Racine, E., Tagoshi, H.: Post-Newtonian factorized multipolar waveforms for spinning, non-precessing black-hole binaries. Phys. Rev. D 83, 064003 (2011). http://arxiv.org/abs/1006.0431 [gr-qc]1006.0431 [gr-qc]

  127. Pan, Y., Buonanno, A., Taracchini, A., Kidder, L.E., Mroue, A.H., Pfeiffer, H.P., Scheel, M.A., Szilagyi, B.: Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism (arXiv:1307.6232 [gr-qc])

    Google Scholar 

  128. Pan, Y., Buonanno, A., Taracchini, A., Boyle, M., Kidder, L.E., Mroue, A.H., Pfeiffer, H.P., Scheel, M.A., et al.: Stability of nonspinning effective-one-body model in approximating two-body dynamics and gravitational-wave emission (arXiv:1311.2565 [gr-qc])

    Google Scholar 

  129. Radice, D., Rezzolla, L., Galeazzi, F.: Beyond second-order convergence in simulations of binary neutron stars in full general-relativity (arXiv:1306.6052 [gr-qc])

    Google Scholar 

  130. Schaefer, G.: The gravitational quadrupole radiation reaction force and the canonical formalism of ADM. Ann. Phys. 161, 81 (1985)

    Article  ADS  Google Scholar 

  131. Scheel, M.A., Boyle, M., Chu, T., Kidder, L.E., Matthews, K.D., Pfeiffer, H.P.: High-accuracy waveforms for binary black hole inspiral, merger, and ringdown. Phys. Rev. D 79, 024003 (2009). http://arxiv.org/abs/0810.1767 [gr-qc]0810.1767 [gr-qc]

  132. Taracchini, A., Pan, Y., Buonanno, A., Barausse, E., Boyle, M., Chu, T., Lovelace, G., Pfeiffer, H.P., et al.: Prototype effective-one-body model for nonprecessing spinning inspiral-merger-ringdown waveforms. Phys. Rev. D 86, 024011 (2012) (arXiv:1202.0790 [gr-qc])

    Google Scholar 

  133. Taracchini, A., Buonanno, A., Pan, Y., Hinderer, T., Boyle, M., Hemberger, D.A., Kidder, L.E., Lovelace, G., et al.: Phys. Rev. D 89, 061502 (2014) (arXiv:1311.2544 [gr-qc])

    Google Scholar 

  134. Tagoshi, H., Sasaki, M.: Post-newtonian expansion of gravitational waves from a particle in circular orbit around a schwarzschild black hole. Prog. Theor. Phys 92, 745–771, (1994). http://arxiv.org/abs/gr-qc/9405062gr-qc/9405062

    Google Scholar 

  135. Tanaka, T., Tagoshi, H., Sasaki, M.: Gravitational waves by a particle in circular orbit around a Schwarzschild black hole. Prog. Theor. Phys. 96, 1087–1101 (1996). http://arxiv.org/abs/gr-qc/9701050gr-qc/9701050

  136. Taracchini, A., Pan, Y., Buonanno, A., Barausse, E., Boyle, M., Chu, T., Lovelace, G., Pfeiffer, H.P., et al.: Prototype effective-one-body model for nonprecessing spinning inspiral-merger-ringdown waveforms. Phys. Rev. D 86, 0240110 (2012). http://arxiv.org/abs/1202.0790 [gr-qc]1202.0790 [gr-qc]

  137. ’t Hooft, G., Veltman, M.J.G.: Regularization and renormalization of gauge fields. Nucl. Phys. B 44, 189 (1972)

    Google Scholar 

  138. Thorne, K.S., Hartle, J.B.: Laws of motion and precession for black holes and other bodies. Phys. Rev. D 31, 1815 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  139. Will, C.M., Eardley, D.M.: Astrophys. J. 212, L91 (1977)

    Article  ADS  Google Scholar 

  140. Will, C.M.: Theory and Experiment in Gravitational Physics, p. 380. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  141. Yunes, N., Buonanno, A., Hughes, S.A., Coleman Miller, M., Pan, Y.: Modeling Extreme mass ratio inspirals within the effective-one-body approach. Phys. Rev. Lett. 104, 091102 (2010). http://arxiv.org/abs/0909.4263 [gr-qc]0909.4263 [gr-qc]

  142. Yunes, N., Buonanno, A., Hughes, Pan, Y., Barausse, E., Miller, M.C., Throwe, W.: Extreme mass-ratio inspirals in the effective-one-body approach: quasi-circular, equatorial orbits around a spinning black hole. Phys. Rev. D 83, 044044 (2011). http://arxiv.org/abs/1009.6013 [gr-qc]1009.6013 [gr-qc]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thibault Damour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Damour, T., Nagar, A. (2016). The Effective-One-Body Approach to the General Relativistic Two Body Problem. In: Haardt, F., Gorini, V., Moschella, U., Treves, A., Colpi, M. (eds) Astrophysical Black Holes. Lecture Notes in Physics, vol 905. Springer, Cham. https://doi.org/10.1007/978-3-319-19416-5_7

Download citation

Publish with us

Policies and ethics