Skip to main content

Oxidative Stress and the Inorganic Carcinogens

  • Chapter
Studies on Experimental Toxicology and Pharmacology

Abstract

The metallic elements and their compounds include some very notable human carcinogens. The various inorganics that are considered clearly carcinogenic in humans include arsenic, beryllium, cadmium, and nickel, and their related compounds, as well as chromium(VI) compounds. For various other metals and metals compounds, there is clear evidence in rodents of carcinogenic potential but only limited or inadequate evidence of carcinogenesis in humans. These categories would include various compounds of lead, indium, cobalt, vanadium and iron. Most metallic elements that are associated with a carcinogenic response have a capacity to induce oxidative stress at levels relevant to carcinogenic mechanisms. The induction of oxidative stress by carcinogenic metals can be direct (e.g. Fenton-like chemistry) or indirect (e.g. glutathione consumption, inhibition of oxidative stress response enzymes). Oxidative stress may be a primary or secondary mechanism of carcinogenesis for an individual metal and could lead to direct DNA damage, or damage to DNA repair systems as a basis of genotoxicity. However, every metal shows distinct biological behaviors and requires investigation on a metal-by-metal basis. Metal-induced oxidative stress can also be associated with a variety of other disease states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283:65–87

    Article  CAS  PubMed  Google Scholar 

  2. Lee JC, Son YO, Pratheeshkumar P et al (2012) Oxidative stress and metal carcinogenesis. Free Radic Biol Med 53:742–757

    Article  CAS  PubMed  Google Scholar 

  3. Beyersmann D, Hartwig A (2008) Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 82:493–512

    Article  CAS  PubMed  Google Scholar 

  4. IARC (2012) International Agency for Research on Cancer monographs on the evaluation of carcinogenic risks to humans. A review of human carcinogens: arsenic, metals, fibres, and dusts, vol 100C. IARC Press, Lyon, pp 41–501

    Google Scholar 

  5. IARC (2006) International Agency for Research on Cancer monographs on the evaluation of carcinogenic risks to humans. Inorganic and organic lead compounds, vol 87. IARC Press, Lyon, pp 33–468

    Google Scholar 

  6. IARC (2006) International Agency for Research on Cancer monographs on the evaluation of carcinogenic risks to humans. Cobalt in hard metals and cobalt sulfate, gallium arsenide, indium phosphide and vanadium pentoxide, vol 86. IARC Press, Lyon, pp 35–292

    Google Scholar 

  7. Ashmore JH, Lesko SM, Miller PE et al (2013) Association of dietary and supplemental iron and colorectal cancer in a population-based study. Eur J Cancer Prev 22:506–511

    Article  CAS  PubMed  Google Scholar 

  8. Kew MC (2014) Hepatic iron overload and hepatocellular carcinoma. Liver Cancer 3:31–40

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Kojima C, Ramirez DC, Tokar EJ et al (2009) Requirement of arsenic biomethylation for oxidative DNA damage. J Natl Cancer Inst 101:1670–1681

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Zhou Z, Wang C, Liu H et al (2013) Cadmium induced cell apoptosis, DNA damage, decreased DNA repair capacity, and genomic instability during malignant transformation of human bronchial epithelial cells. Int J Med Sci 10:1485–1496

    Article  PubMed Central  PubMed  Google Scholar 

  11. Thomas DJ, Li J, Waters SB et al (2007) Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals. Exp Biol Med (Maywood) 232:3–13

    CAS  Google Scholar 

  12. Styblo M, Del Razo LM, Vega L et al (2000) Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol 74:289–299

    Article  CAS  PubMed  Google Scholar 

  13. Salnikow K, Zhitkovich A (2008) Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol 21:28–44

    Google Scholar 

  14. Engström K, Vahter M, Mlakar SJ et al (2011) Polymorphisms in arsenic(+III oxidation state) methyltransferase (AS3MT) predict gene expression of AS3MT as well as arsenic metabolism. Environ Health Perspect 119:182–188

    Article  PubMed Central  PubMed  Google Scholar 

  15. Tokar EJ, Boyd W, Freedman JH et al (2013) Toxic effects of metals, Chapter 23. In: Klaassen CD (ed) Casarett and Doull’s toxicology: the basic science of poisons, 8th edn. McGraw-Hill Medical, New York, pp 981–1030

    Google Scholar 

  16. Flora SJS (2011) Arsenic-induced oxidative stress and its reversibility. Free Radic Biol Med 51:257–281

    Article  CAS  PubMed  Google Scholar 

  17. Tokar EJ, Benbrahim-Tallaa L, Ward JM et al (2010) Cancer in experimental animals exposed to arsenic and arsenic compounds. Crit Rev Toxicol 40:912–927

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Yamanaka K, Takabayashi F, Mizoi M et al (2001) Oral exposure of dimethylarsinic acid, a main metabolite of inorganic arsenics, in mice leads to an increase in 8-oxo-2’deoxyguanosine level, specifically in the target organs for arsenic carcinogenesis. Biochem Biophys Res Commun 287:66–70

    Article  CAS  PubMed  Google Scholar 

  19. Attia SM, Harisa GI, Hassan MH et al (2013) Beryllium chloride-induced oxidative DNA damage and alteration in the expression patterns of DNA repair-related genes. Mutagenesis 28:555–559

    Article  CAS  PubMed  Google Scholar 

  20. Valko M, Rhodes CJ, Moncol J et al (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    Article  CAS  PubMed  Google Scholar 

  21. Waalkes MP (2003) Cadmium carcinogenesis. Mutat Res 533:107–120

    Article  CAS  PubMed  Google Scholar 

  22. Qu W, Pi J, Waalkes MP (2013) Metallothionein blocks oxidative DNA damage in vitro. Arch Toxicol 87:311–321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Witt KL, Stout MD, Herbert RA et al (2013) Mechanistic insights from the NTP studies of chromium. Toxicol Pathol 41:326–342

    Article  CAS  PubMed  Google Scholar 

  24. Sun H, Shamy M, Costa M (2013) Nickel and epigenetic gene silencing. Genes (Basel) 4:583–595

    Article  Google Scholar 

  25. NTP 2011 (2011) National Toxicology Program Report on Carcinogens, 12th ed. Cobalt sulfate and Cobalt-tungsten Carbide: powders and hard metals, pp. 113–118

    Google Scholar 

  26. Salnikow K, Zhitkovich A (2008) Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol 21:28–44

    Article  PubMed Central  PubMed  Google Scholar 

  27. Waalkes MP, Diwan BA, Ward JM et al (1995) Renal tubular tumors and atypical hyperplasias in B6C3F1 mice exposed to lead acetate during gestation and lactation occur with minimal chronic nephropathy. Cancer Res 55:5265–5271

    CAS  PubMed  Google Scholar 

  28. Waalkes MP, Liu J, Goyer RA (2004) Metallothionein-I/II double knockout mice are hypersensitive to lead-induced kidney carcinogenesis: role of inclusion body formation. Cancer Res 64:7766–7772

    Article  CAS  PubMed  Google Scholar 

  29. Chiaverini N, Ley MD (2010) Protective effect of metallothionein on oxidative stress-induced DNA damage. Free Radic Res 44:605–613

    Article  CAS  PubMed  Google Scholar 

  30. Qu W, Diwan BA, Liu J et al (2002) The metallothionein-null phenotype is associated with heightened sensitivity to lead toxicity and an inability to form inclusion bodies. Am J Pathol 160:1047–1056

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Zuo P, Qu W, Cooper RN et al (2009) Potential role of alpha-synuclein and metallothionein in lead-induced inclusion body formation. Toxicol Sci 111:100–108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Gottschling BC, Maronpot RR, Hailey JR et al (2001) The role of oxidative stress in indium phosphide-induced lung carcinogenesis in rats. Toxicol Sci 64:28–40

    Article  CAS  PubMed  Google Scholar 

  33. Asakura K, Satoh H, Chiba M et al (2009) Genotoxicity studies of heavy metals: lead, bismuth, indium, silver and antimony. J Occup Health 51:498–512

    Article  CAS  PubMed  Google Scholar 

  34. IARC (1987) International Agency for Research on Cancer monographs on the evaluation of carcinogenic risks to humans; overall evaluations of Carcinogenicity: an updating of IARC Monographs Volumes 1 to 42, Suppl. No. 7. IARC Press, Lyon

    Google Scholar 

  35. Chua AC, Klopcic BR, Ho DS et al (2013) Dietary iron enhances colonic inflammation and IL-6/IL-11-Stat3 signaling promoting colonic tumor development in mice. PLoS One 8(11):e78850

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Gao X, Qian M, Campian JL et al (2006) Cytotoxic and mutagenic effects of tobacco-borne free fatty acids. Free Radic Biol Med 40:165–172

    Article  CAS  PubMed  Google Scholar 

  37. Ponka P, Tenenbein M, Eaton JW (2007) Iron. In: Nordberg GF, Fowler BA, Nordberg M (eds) Handbook of the toxicology of metals, 3rd edn. Elsevier, New York, pp 557–567

    Google Scholar 

  38. Kostova I (2009) Titanium and vanadium complexes as anticancer agents. Anticancer Agents Med Chem 9:827–842

    Article  CAS  PubMed  Google Scholar 

  39. Silbergeld EK, Waalkes M, Rice JM (2000) Lead as a carcinogen: experimental evidence and mechanisms of action. Am J Ind Med 38:316–323

    Article  CAS  PubMed  Google Scholar 

  40. Ress NB, Chou BJ, Renne RA et al (2003) Carcinogenicity of inhaled vanadium pentoxide in F344/N rats and B6C3F1 mice. Toxicol Sci 74:287–296

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Waalkes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tokar, E.J., Qu, W., Person, R.J., Ngalame, O.N., Waalkes, M.P. (2015). Oxidative Stress and the Inorganic Carcinogens. In: Roberts, S., Kehrer, J., Klotz, LO. (eds) Studies on Experimental Toxicology and Pharmacology. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Cham. https://doi.org/10.1007/978-3-319-19096-9_16

Download citation

Publish with us

Policies and ethics