Skip to main content

Assessing the Robustness of Parsimonious Predictions for Gene Neighborhoods from Reconciled Phylogenies: Supplementary Material

  • Conference paper
Book cover Bioinformatics Research and Applications (ISBRA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9096))

Included in the following conference series:

Abstract

The availability of many assembled genomes opens the way to study the evolution of syntenic character within a phylogenetic context. The DeCo algorithm, recently introduced by Bérard et al., computes parsimonious evolutionary scenarios for gene adjacencies, from pairs of reconciled gene trees. Following the approach pioneered by Sturmfels and Pachter, we describe how to modify the DeCo dynamic programming algorithm to identify classes of cost schemes that generate similar parsimonious evolutionary scenarios for gene adjacencies. We also describe how to assess the robustness, again to changes of the cost scheme, of the presence or absence of specific ancestral gene adjacencies in parsimonious evolutionary scenarios. We apply our method to six thousands mammalian gene families, and show that computing the robustness to changes of cost schemes provides interesting insights on the DeCo model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bansal, M.S., Alm, E.J., Kellis, M.: Reconciliation revisited: Handling multiple optima when reconciling with duplication, transfer, and loss. J. Comput. Biol. 20(10), 738–754 (2013)

    Article  MathSciNet  Google Scholar 

  2. Bérard, S., Gallien, C., Boussau, B., Szöllosi, G.J., Daubin, V., Tannier, E.: Evolution of gene neighborhoods within reconciled phylogenies. Bioinformatics 28(18), 382–388 (2012)

    Article  Google Scholar 

  3. Biller, P., Feijão, P., Meidanis, J.: Rearrangement-based phylogeny using the single-cut-or-join operation. IEEE/ACM Trans. Comput. Biol. Bioinf. 10(1), 122–134 (2013)

    Article  Google Scholar 

  4. Chan, T.M.: Optimal output-sensitive convex hull algorithms in two and three dimensions. Discrete Comput. Geom. 16, 361–368 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chauve, C., El-Mabrouk, N., Gueguen, L., Semeria, M., Tannier, E.: Duplication, rearrangement and reconciliation: A follow-up 13 years later. Models and Algorithms for Genome Evolution, 47–62 (2013)

    Google Scholar 

  6. Chauve, C., Ponty, Y., Zanetti, J.P.P.: Evolution of genes neighborhood within reconciled phylogenies: An ensemble approach. In: Campos, S. (ed.) BSB 2014. LNCS, vol. 8826, pp. 49–56. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  7. Gagnon, Y., Blanchette, M., El-Mabrouk, N.: A flexible ancestral genome reconstruction method based on gapped adjacencies. BMC Bioinformatics 13(S-19), S4 (2012)

    Google Scholar 

  8. Gusfield, D., Balasubramanian, K., Naor, D.: Parametric optimization of sequence alignment. Algorithmica 12(4/5), 312–326 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hahn, M.W.: Bias in phylogenetic tree reconciliation methods: implications for vertebrate genome evolution. Genome Biol. 8, R141 (2007)

    Google Scholar 

  10. Libeskind-Hadas, R., Wu, Y., Bansal, M.S., Kellis, M.: Pareto-optimal phylogenetic tree reconciliation. Bioinformatics 30(12), 87–95 (2014)

    Article  Google Scholar 

  11. Ma, J., Ratan, A., Raney, B.J., Suh, B.B., Zhang, L., Miller, W., Haussler, D.: DUPCAR: reconstructing contiguous ancestral regions with duplications. J. Comput. Biol. 15(8), 1007–1027 (2008)

    Article  MathSciNet  Google Scholar 

  12. Manuch, J., Patterson, M., Wittler, R., Chauve, C., Tannier, E.: Linearization of ancestral multichromosomal genomes. BMC Bioinformatics 13(S-19), S11 (2012)

    Google Scholar 

  13. Pachter, L., Sturmfels, B.: Parametric inference for biological sequence analysis. Proc. Natl. Acad. Sci. USA 101(46), 16138–16143 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Pachter, L., Sturmfels, B.: Tropical geometry of statistical models. Proc. Natl. Acad. Sci. USA 101(46), 16132–16137 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Pachter, L., Sturmfels, B. (eds.): Algebraic Statistics for Computational Biology. Cambridge University Press (2005)

    Google Scholar 

  16. Saule, C., Giegerich, R.: Observations on the feasibility of exact Pareto optimization. In: Proceedings of CMSR 2014, pp. 43–56 (2014)

    Google Scholar 

  17. Schnattinger, T., Schöning, U., Kestler, H.A.: Structural RNA alignment by multi-objective optimization. Bioinformatics 29(13), 1607–1613 (2013)

    Article  Google Scholar 

  18. Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal median and halving problems under different genomic distances. BMC Bioinformatics, 10 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Rajaraman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Rajaraman, A., Chauve, C., Ponty, Y. (2015). Assessing the Robustness of Parsimonious Predictions for Gene Neighborhoods from Reconciled Phylogenies: Supplementary Material. In: Harrison, R., Li, Y., Măndoiu, I. (eds) Bioinformatics Research and Applications. ISBRA 2015. Lecture Notes in Computer Science(), vol 9096. Springer, Cham. https://doi.org/10.1007/978-3-319-19048-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19048-8_22

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19047-1

  • Online ISBN: 978-3-319-19048-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics