Skip to main content

Orthogonal Graph Drawing with Inflexible Edges

  • Conference paper
  • First Online:
Algorithms and Complexity (CIAC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9079))

Included in the following conference series:

Abstract

We consider the problem of creating plane orthogonal drawings of 4-planar graphs (planar graphs with maximum degree 4) with constraints on the number of bends per edge. More precisely, we have a flexibility function assigning to each edge \(e\) a natural number \({{\mathrm{flex}}}(e)\), its flexibility. The problem FlexDraw asks whether there exists an orthogonal drawing such that each edge \(e\) has at most \({{\mathrm{flex}}}(e)\) bends. It is known that FlexDraw is NP-hard if \({{\mathrm{flex}}}(e) = 0\) for every edge \(e\) [7]. On the other hand, FlexDraw can be solved efficiently if \({{\mathrm{flex}}}(e) \ge 1\) [2] and is trivial if \({{\mathrm{flex}}}(e) \ge 2\) [1] for every edge \(e\).

To close the gap between the NP-hardness for \({{\mathrm{flex}}}(e) = 0\) and the efficient algorithm for \({{\mathrm{flex}}}(e) \ge 1\), we investigate the computational complexity of FlexDraw in case only few edges are inflexible (i.e., have flexibility \(0\)). We show that for any \(\varepsilon > 0\) FlexDraw is NP-complete for instances with \(O(n^\varepsilon )\) inflexible edges with pairwise distance \(\Omega (n^{1-\varepsilon })\) (including the case where they induce a matching). On the other hand, we give an FPT-algorithm with running time \(O(2^k\cdot n \cdot T_{{{\mathrm{flow}}}}(n))\), where \(T_{{{\mathrm{flow}}}}(n)\) is the time necessary to compute a maximum flow in a planar flow network with multiple sources and sinks, and \(k\) is the number of inflexible edges having at least one endpoint of degree 4.

Partially supported by grant WA 654/21-1 of the German Research Foundation (DFG).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biedl, T., Kant, G.: A better heuristic for orthogonal graph drawings. Comput. Geom.: Theory Appl. 9(3), 159–180 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bläsius, T., Krug, M., Rutter, I., Wagner, D.: Orthogonal graph drawing with flexibility constraints. Algorithmica 68(4) (2014)

    Google Scholar 

  3. Bläsius, T., Lehmann, S., Rutter, I.: Orthogonal graph drawing with inflexible edges. CoRR abs/1404.2943, 1–23 (2014). http://arxiv.org/abs/1404.2943

  4. Bläsius, T., Rutter, I., Wagner, D.: Optimal orthogonal graph drawing with convex bend costs. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 184–195. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Cornelsen, S., Karrenbauer, A.: Accelerated bend minimization. J. Graph Alg. Appl. 16(3), 635–650 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Di Battista, G., Liotta, G., Vargiu, F.: Spirality and optimal orthogonal drawings. SIAM J. Comput. 27(6), 1764–1811 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Di Battista, G., Tamassia, R.: On-line maintenance of triconnected components with SPQR-trees. Algorithmica 15(4), 302–318 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16(3), 421–444 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bläsius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bläsius, T., Lehmann, S., Rutter, I. (2015). Orthogonal Graph Drawing with Inflexible Edges. In: Paschos, V., Widmayer, P. (eds) Algorithms and Complexity. CIAC 2015. Lecture Notes in Computer Science(), vol 9079. Springer, Cham. https://doi.org/10.1007/978-3-319-18173-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18173-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18172-1

  • Online ISBN: 978-3-319-18173-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics